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I N T R O D U C T I O N

This book is about the science of doing clinical research in all its forms: translational
research, clinical trials, patient-oriented research, epidemiologic studies, behavioral
science and health services research. Codifying the nature of this broad-based science
and how to do it is not straightforward, and there is no single approach that everyone
agrees is best. Our first two editions drew on the terms and principles of epidemiology
in a practical and reader-friendly way, emphasizing systematic and common sense
approaches to the many judgments involved in designing a study.

The Third Edition of Designing Clinical Research (DCR) follows the same
path, adding new developments along the way. New material on observational
studies includes case-crossover designs, and the use of propensity scores, instrumental
variables and Mendelian randomization to control confounding. Reorganized chapters
on clinical trials introduce adaptive designs, and those on studying medical tests and on
utilizing existing datasets present expanded options that will be attractive to beginning
investigators. The chapter on research ethics is extensively updated, the one on data
management entirely new (reflecting current approaches to information technology),
and a rewritten chapter on study implementation and quality control introduces
practicalities of study startup and regulatory issues (‘‘Good Clinical Practices’’). An
updated chapter on getting funded brings help for the challenges facing young
investigators.

The Third Edition is also fresh throughout, with updated examples and references
in every chapter. And, perhaps most important, it reflects a continued maturation
of our thinking, aided by feedback from nearly 1000 health professionals that we
helped design their own studies in our Designing Clinical Research workshop in the
past 6 years since DCR 2. The syllabus for that workshop, which can be used by
others who wish to teach this material or desire a self-instruction guide, has been
combined with useful tools like a sample size calculator on our new DCR Website at
www.epibiostat.ucsf.edu/dcr/.

Many things have not changed in the Third Edition. It is still a simple book
that leaves out unnecessary technicalities and invites the investigator to focus on the
most important things: finding a good research question and planning an efficient,
effective, ethical design. The two chapters on sample size estimation, which have
received a larger number of favorable comments from readers than any other part
of the book, continue to demystify the process and enable readers to make these
calculations themselves without the need for formulas. We still use the feminine
pronoun in the first half of the book, masculine in the second, reasoning that we
are writing for clinical investigators of both genders. And we still do not address the
important area of statistical analysis, nor how to go about disseminating the findings
of clinical research—topics that many readers of this book will wish to pursue (1–5).

New investigators often find the choice of a research question to be the most
difficult step in designing a project. Fortunately, studies tend to generate more
questions than they answer, and an investigator’s awareness of researchable questions
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will grow as she gains experience. In the meantime, she should seek out her own
version of the most important companion to this book, a long-term relationship with
an excellent mentor or two.

Other benefits come from experience. Clinical research becomes easier and more
rewarding as investigators gain familiarity with the particulars of recruitment, mea-
surement and design that pertain to their area of specialization. A higher percentage of
their applications for funding are successful. They acquire staff and junior colleagues
and develop lasting friendships with scientists working on the same topic in distant
places. And because most increments in knowledge are small and uncertain—major
scientific breakthroughs are rare—they begin to see substantial changes in the state
of medicine as an aggregate result of their efforts.

It is gratifying to know many people who have used this book who have found
they like doing research, and have settled into a great career. For those with inquiring
minds, the pursuit of truth can become a lifelong fascination. For perfectionists and
craftsmen, there are endless challenges in creating an elegant study that produces
conclusive answers to important questions at an affordable cost in time and money.
And for those with the ambition to make a lasting contribution to society, there is the
prospect that skill, tenacity and luck may lead to important advances in knowledge.
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Basic Ingredients





1 Getting Started: The

Anatomy and Physiology

of Clinical Research

Stephen B. Hulley, Thomas B. Newman,
and Steven R. Cummings

This chapter introduces clinical research from two viewpoints, setting up themes that
run together through the book. One is the anatomy of research—what it’s made
of. This includes the tangible elements of the study plan: research question, design,
subjects, measurements, sample size calculation, and so forth. An investigator’s goal
is to create these elements in a form that will make the project feasible, efficient, and
cost-effective.

The other theme is the physiology of research—how it works. Studies are useful
to the extent that they yield valid inferences, first about what happened in the study
sample and then about how these study findings generalize to people outside the
study. The goal is to minimize the errors, random and systematic, that threaten
conclusions based on these inferences.

Separating the two themes is artificial in the same way that the anatomy of the
human body doesn’t make much sense without some understanding of its physiology.
But the separation has the same advantage: it clarifies our thinking about a complex
topic.

ANATOMY OF RESEARCH: WHAT IT’S MADE OF

The structure of a research project is set out in its protocol, the written plan of the
study. Protocols are well known as devices for seeking grant funds, but they also have
a vital scientific function: helping the investigator organize her research in a logical,
focused, and efficient way. Table 1.1 outlines the components of a protocol. We
introduce the whole set here, expand on each component in the ensuing chapters of
the book, and return to put the completed pieces together in Chapter 19.

Research Question
The research question is the objective of the study, the uncertainty the investigator
wants to resolve. Research questions often begin with a general concern that must be

3
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TABLE 1.1 Outline of the Study Protocol

Element Purpose

Research questions What questions will the study address?

Background and significance Why are these questions important?

Design How is the study structured?

Time frame
Epidemiologic approach

Subjects Who are the subjects and how will they be selected?

Selection criteria
Sampling design

Variables What measurements will be made?

Predictor variables
Confounding variables
Outcome variables

Statistical issues How large is the study and how will it be analyzed?

Hypotheses
Sample size
Analytic approach

narrowed down to a concrete, researchable issue. Consider, for example, the general
question:

Should people eat more fish?

This is a good place to start, but the question must be focused before planning
efforts can begin. Often this involves breaking the question into more specific
components, and singling out one or two of these to build the protocol around. Here
are some examples:

How often do Americans eat fish?

Does eating fish lower the risk of cardiovascular disease?

Is there a risk of mercury toxicity from increasing fish intake in older adults?

Do fish oil supplements have the same effects on cardiovascular disease as dietary fish?

Which fish oil supplements don’t make people smell like fish?

A good research question should pass the ‘‘So what?’’ test. Getting the answer
should contribute usefully to our state of knowledge. The acronym FINER denotes
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five essential characteristics of a good research question: it should be feasible,
interesting, novel, ethical, andrelevant (Chapter 2).

Background and Significance
The background and significance section of a protocol sets the proposed study
in context and gives its rationale: What is known about the topic at hand? Why is
the research question important? What kind of answers will the study provide? This
section cites previous research that is relevant (including the investigator’s own work)
and indicates the problems with the prior research and what uncertainties remain. It
specifies how the findings of the proposed study will help resolve these uncertainties
and lead to new scientific knowledge and influence practice guidelines or public
health policy. Often, work on the significance section will lead to modifications in the
research question.

Design
The design of a study is a complex issue. A fundamental decision is whether to
take a passive role in observing the events taking place in the study subjects in an
observational study or to apply an intervention and examine its effects on these events
in a clinical trial (Table 1.2). Among observational studies, two common designs are
cohort studies, in which observations are made in a group of subjects that is followed
over time, and cross-sectional studies, in which observations are made on a single
occasion. Cohort studies can be further divided into prospective studies that begin in
the present and follow subjects into the future, and retrospective studies that examine
information and specimens that have been collected in the past. A third common
option is the case-control design, in which the investigator compares a group of people
who have a disease or condition with another group who do not. Among clinical trial
options, the randomized blinded trial is usually the best design but nonrandomized
or unblinded designs may be more suitable for some research questions.

No one approach is always better than the others, and each research question
requires a judgment about which design is the most efficient way to get a satisfactory
answer. The randomized blinded trial is often held up as the best design for establishing
causality and the effectiveness of interventions, but there are many situations for which
an observational study is a better choice or the only feasible option. The relatively
low cost of case-control studies and their suitability for rare outcomes makes them
attractive for some questions. Special considerations apply to choosing designs for
studying diagnostic tests. These issues are discussed in Chapters 7 through 12, each
dealing with a particular set of designs.

A typical sequence for studying a topic begins with observational studies of a
type that is often called descriptive. These studies explore the lay of the land—for
example, describing distributions of diseases and health-related characteristics in the
population:

What is the average number of servings of fish per week in the diet of Americans with
a history of coronary heart disease (CHD)?

Descriptive studies are usually followed or accompanied by analytic studies that
evaluate associations to permit inferences about cause-and-effect relationships:

Is there an association between fish intake and risk of recurrent myocardial infarction
in people with a history of CHD?
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TABLE 1.2 Examples of Common Clinical Research Designs Used to Find Out
Whether Fish Intake Reduces Coronary Heart Disease Risk

Study Design Key Feature Example

Observational Designs

Cohort study A group followed over time The investigator measures fish intake
at baseline and periodically examines
subjects at follow-up visits to see if
those who eat more fish have fewer
coronary heart disease (CHD) events

Cross-sectional study A group examined at one point
in time

She interviews subjects about current
and past history of fish intake and
correlates results with history of CHD
and current coronary calcium score

Case-control study Two groups selected based on
the presence or absence of an
outcome

She examines a group of patients with
CHD (the ‘‘cases’’) and compares
them with a group who did not have
CHD (the controls), asking about past
fish intake

Clinical Trial Design

Randomized blinded trial Two groups created by a
random process, and a blinded
intervention

She randomly assigns subjects to
receive fish oil supplements or
placebo, then follows both treatment
groups for several years to observe
the incidence of CHD

The final step is often a clinical trial to establish the effects of an intervention:

Does treatment with fish oil capsules reduce total mortality in people with CHD?

Clinical trials usually occur relatively late in a series of research studies about a
given question, because they tend to be more difficult and expensive, and to answer
more definitively the narrowly focused questions that arise from the findings of
observational studies.

It is useful to characterize a study in a single sentence that summarizes the design
and research question. If the study has two major phases, the design for each should
be mentioned.

This is a cross-sectional study of dietary habits in 50- to 69-year-old people with
a history of CHD, followed by a prospective cohort study of whether fish intake is
associated with low risk of subsequent coronary events.

This sentence is the research analog to the opening sentence of a medical
resident’s report on a new hospital admission: ‘‘This 62-year-old white policewoman
was well until 2 hours before admission, when she developed crushing chest pain radiating
to the left shoulder.’’ Some designs do not easily fit into the categories listed above,
and classifying them with a single sentence can be surprisingly difficult. It is worth the
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effort—a precise description of design and research question clarifies the investigator’s
thoughts and is useful for orienting colleagues and consultants.

Study Subjects
Two major decisions must be made in choosing the study subjects (Chapter 3). The
first is to specify inclusion andexclusion criteria that define the target population: the
kinds of patients best suited to the research question. The second decision concerns
how to recruit enough people from an accessible subset of this population to be the
subjects of the study. For example, the study of fish intake in people with coronary
heart disease (CHD) might identify subjects seen in the clinic with diagnosis codes
for myocardial infarction, angioplasty, or coronary artery bypass grafting in their
electronic medical record. Decisions about which patients to study represent trade-
offs; studying a random sample of people with CHD from the entire country (or at
least several different states and medical care settings) would enhance generalizability
but be much more difficult and costly.

Variables
Another major set of decisions in designing any study concerns the choice of which
variables to measure (Chapter 4). A study of fish intake in the diet, for example,
might ask about different types of fish that contain different levels of �-3 fatty acids,
and include questions about portion size, whether the fish was fried or baked, and
whether the subject takes fish oil supplements.

In an analytic study the investigator studies the associations among variables
to predict outcomes and to draw inferences about cause and effect. In considering
the association between two variables, the one that occurs first or is more likely on
biologic grounds to be causal is called the predictor variable; the other is called the
outcome variable.1 Most observational studies have many predictor variables (age,
race, sex, smoking history, fish and fish oil supplement intake), and several outcome
variables (heart attacks, strokes, quality of life, unpleasant odor).

Clinical trials examine the effects of an intervention (a special kind of predictor
variable that the investigator manipulates), such as treatment with fish oil capsules. This
design allows her to observe the effects on the outcome variable using randomization
to control for the influence of confounding variables—other predictors of the
outcome such as intake of red meat or income level that could be related to dietary
fish and confuse the interpretation of the findings.

Statistical Issues
The investigator must develop plans for estimating sample size and for managing and
analyzing the study data. This generally involves specifying a hypothesis (Chapter 5).

Hypothesis: 50- to 69-year-old women with CHD who take fish oil supplements will
have a lower risk of myocardial infarction than those who do not.

This is a version of the research question that provides the basis for testing the
statistical significance of the findings. The hypothesis also allows the investigator to
calculate the sample size—the number of subjects needed to observe the expected
difference in outcome between study groups with reasonable probability or power

1Predictors are sometimes termed independent variables and outcomes dependent variables, but we find this usage
confusing, particularly since independent means something quite different in the context of multivariate analyses.
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(Chapter 6). Purely descriptive studies (what proportion of people with CHD use fish oil
supplements?) do not involve tests of statistical significance, and thus do not require
a hypothesis; instead, the number of subjects needed to produce acceptably narrow
confidence intervals for means, proportions, or other descriptive statistics can be
calculated.

PHYSIOLOGY OF RESEARCH: HOW IT WORKS

The goal of clinical research is to draw inferences from findings in the study about
the nature of the universe around it (Fig 1.1). Two major sets of inferences are
involved in interpreting a study (illustrated from right to left in Fig. 1.2). Inference
#1 concerns internal validity, the degree to which the investigator draws the
correct conclusions about what actually happened in the study. Inference #2 concerns
external validity (also called generalizability), the degree to which these conclusions
can be appropriately applied to people and events outside the study.

InferTRUTH IN THE
UNIVERSE

FINDINGS IN
THE STUDY

FIGURE 1.1. The findings of a study lead to inferences
about the universe outside.

When an investigator plans a study, she reverses the process, working from left to
right in the lower half of Fig. 1.2 with the goal of maximizing the validity of these
inferences at the end of the study. She designs a study plan in which the choice of
research question, subjects, and measurements enhances the external validity of the
study and is conducive to implementation with a high degree of internal validity. In
the next sections we address design and then implementation before turning to the
errors that threaten the validity of these inferences.

TRUTH IN THE
UNIVERSE

TRUTH IN THE
STUDY

FINDINGS IN
THE STUDY

Research
question 

Actual
studyDesign Implement

InferInferDrawing
Conclusions

Designing and
Implementing

Study
plan

EXTERNAL
VALIDITY

INTERNAL
VALIDITY

FIGURE 1.2. The process of designing and implementing a research project sets the stage for drawing
conclusions from the findings.

Designing the Study
Consider the simple descriptive question:

What is the prevalence of regular use of fish oil supplements among people with CHD?
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This question cannot be answered with perfect accuracy because it would be
impossible to study all patients with CHD and our approaches to discovering whether
a person is taking fish oil are imperfect. So the investigator settles for a related question
that can be answered by the study:

Among a sample of patients seen in the investigator’s clinic who have a previous
CHD diagnosis and respond to a mailed questionnaire, what proportion report
taking fish oil supplements?

The transformation from research question to study plan is illustrated in Fig. 1.3.
One major component of this transformation is the choice of a sample of subjects
that will represent the population. The group of subjects specified in the protocol
can only be a sample of the population of interest because there are practical barriers
to studying the entire population. The decision to study patients in the investigator’s
clinic identified through the electronic medical record system is a compromise. This
is a sample that is feasible to study but one that may produce a different prevalence of
fish oil use than that found in all people with CHD.

The other major component of the transformation is the choice of variables that
will represent the phenomena of interest. The variables specified in the study plan are
usually proxies for these phenomena. The decision to use a self-report questionnaire
to assess fish oil use is a fast and inexpensive way to collect information, but it will not
be perfectly accurate. Some people may not accurately remember or record how much
they take in a typical week, others may report how much they think they should be
taking, and some may be taking products that they do not realize should be included.

In short, each of the differences in Fig. 1.3 between the research question and
the study plan has the purpose of making the study more practical. The cost of this
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FIGURE 1.3. Design errors: if the intended sample and variables do not represent
the target population and phenomena of interest, these errors may distort inferences
about what actually happens in the population.
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increase in practicality, however, is the risk that design changes may cause the study
to produce a wrong or misleading conclusion because its design answers something
different from the research question of interest.

Implementing the Study
Returning to Fig. 1.2, the right-hand side is concerned with implementation and the
degree to which the actual study matches the study plan. At issue here is the problem
of a wrong answer to the research question because the way the sample was actually
drawn, and the measurements made, differed in important ways from the way they
were designed (Fig. 1.4).

The actual sample of study subjects is almost always different from the intended
sample. The plans to study all eligible patients with CHD, for example, could be
disrupted by incomplete diagnoses in the electronic medical record, wrong addresses
for the mailed questionnaire, and refusal to participate. Those subjects who are
reached and agree to participate may have a different prevalence of fish oil use than
those not reached or not interested. In addition to these problems with the subjects,
the actual measurements can differ from the intended measurements. If the format of
the questionnaire is unclear subjects may get confused and check the wrong box, or
they may simply omit the question by mistake.

These differences between the study plan and the actual study can alter the answer
to the research question. Figure 1.4 illustrates that errors in implementing the study
join errors of design in leading to a misleading or wrong answer to the research
question.
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FIGURE 1.4. Implementation errors: if the actual subjects and measurements do not
represent the intended sample and variables, these errors may distort inferences about
what actually happened in the study.
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Causal Inference
A special kind of validity problem arises in studies that examine the association
between a predictor and an outcome variable in order to draw causal inference. If
a cohort study finds an association between fish intake and CHD events, does this
represent cause and effect, or is the fish just an innocent bystander in a web of
causation that involves other variables? Reducing the likelihood of confounding and
other rival explanations is one of the major challenges in designing an observational
study (Chapter 9).

The Errors of Research
No study is free of errors, and the goal is to maximize the validity of inferences
from what happened in the study sample to the nature of things in the population.
Erroneous inferences can be addressed in the analysis phase of research, but a better
strategy is to focus on design and implementation (Fig. 1.5), preventing errors from
occurring in the first place to the extent that this is practical.

The two main kinds of error that interfere with research inferences are random
error and systematic error. The distinction is important because the strategies for
minimizing them are quite different.

Random error is a wrong result due to chance—sources of variation that are
equally likely to distort estimates from the study in either direction. If the true
prevalence of fish oil supplement use in 50- to 69-year-old patients with CHD is 20%,
a well-designed sample of 100 patients from that population might contain exactly
20 patients who use these supplements. More likely, however, the sample would
contain a nearby number such as 18, 19, 21, or 22. Occasionally, chance would
produce a substantially different number, such as 12 or 28. Among several techniques
for reducing the influence of random error (Chapter 4), the simplest is to increase

Solution SolutionErrorError
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Improve design (Ch. 7-13)
Enlarge sample size
5 strategies to increase

precision (Ch. 4)

Improve design (Ch. 7-13)
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error

Quality control (Ch.17)
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FIGURE 1.5. Research errors. This blown-up detail of the error boxes in Figures 1.3 and
1.4 reveals strategies for controlling random and systematic error in the design,
implementation, and analysis phases of the study.
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the sample size. The use of a larger sample diminishes the likelihood of a wrong
result by increasing the precision of the estimate—the degree to which the observed
prevalence approximates 20% each time a sample is drawn.

Systematic error is a wrong result due to bias—sources of variation that distort
the study findings in one direction. An illustration is the decision in Fig. 1.3 to study
patients in the investigator’s clinic, where the local treatment patterns have responded
to her interest in the topic and her fellow doctors are more likely than the US
average to recommend fish oil. Increasing the sample size has no effect on systematic
error. The only way to improve the accuracy of the estimate (the degree to which
it approximates the true value) is to design the study in a way that either reduces
the size of the various biases or gives some information about them. An example
would be to compare results with those from a second sample of patients with
CHD drawn from another setting, for example, examining whether the findings in
patients seen in a cardiology clinic are different from those in patients in a gynecology
clinic.

The examples of random and systematic error in the preceding two paragraphs
are components of sampling error, which threatens inferences from the study
subjects to the population. Both random and systematic errors can also contribute
to measurement error, threatening the inferences from the study measurements
to the phenomena of interest. An illustration of random measurement error is the
variation in the response when the diet questionnaire is administered to the patient on
several occasions. An example of systematic measurement error is the underestimation
of the prevalence of fish oil use due to lack of clarity in how the question is
phrased. Additional strategies for controlling all these sources of error are presented
in Chapters 3 and 4.

The concepts presented in the last several pages are summarized in Fig. 1.6.
Getting the right answer to the research question is a matter of designing and
implementing the study in a fashion that keeps the extent of inferential errors at an
acceptable level.
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FIGURE 1.6. Summary of the physiology of research—how it works.
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DESIGNING THE STUDY

Study Protocol
The process of developing the study plan begins with the one-sentence research
question described earlier. Three versions of the study plan are then produced in
sequence, each larger and more detailed than the preceding one.

• Outline of the elements of the study (Table 1.1 and Appendix 1.1). This one page
beginning serves as a standardized checklist to remind the investigator to include all
the components. As important, the sequence has an orderly logic that helps clarify
the investigator’s thinking on the topic.

• Study protocol. This expansion on the study outline can range from 5 to 25 or
more pages, and is used to plan the study and to apply for grant support. The
protocol parts are discussed throughout this book and put together in Chapter 19.

• Operations manual. This collection of specific procedural instructions, question-
naires, and other materials is designed to ensure a uniform and standardized
approach to carrying out the study with good quality control (Chapters 4 and 17).

The research question and study outline should be written out at an early stage.
Putting thoughts down on paper leads the way from vague ideas to specific plans and
provides a concrete basis for getting advice from colleagues and consultants. It is a
challenge to do it (ideas are easier to talk about than to write down), but the rewards
are a faster start and a better project.

Appendix 1.1 provides an example of a study outline. These plans deal more
with the anatomy of research (Table 1.1) than with its physiology (Fig. 1.6), so the
investigator must remind herself to worry about the errors that may result when it
is time to draw inferences about what happened in the study sample and how it
applies to the population. A study’s virtues and problems can be revealed by explicitly
considering how the question the study is likely to answer differs from the research
question, given the plans for acquiring subjects and making measurements, and given
the likely problems of implementation.

With the study outline in hand and the intended inferences in mind, the
investigator can proceed with the details of her protocol. This includes getting
advice from colleagues, drafting specific recruitment and measurement methods,
considering scientific and ethical appropriateness, changing the study question and
outline, pretesting specific recruitment and measurement methods, making more
changes, getting more advice, and so forth. This iterative process is the nature of
research design and the topic of the rest of this book.

Trade-offs
Errors are an inherent part of all studies. The main issue is whether the errors will be
large enough to change the conclusions in important ways. When designing a study,
the investigator is in much the same position as a labor union official bargaining for a
new contract. The union official begins with a wish list—shorter hours, more money,
health care benefits and so forth. She must then make concessions, holding on to
the things that are most important and relinquishing those that are not essential. At
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the end of the negotiations is a vital step: she looks at the best contract she could
negotiate and decides if it has become so bad that it is no longer worth having.

The same sort of concessions must be made by an investigator when she
transforms the research question to the study plan and considers potential problems
in implementation. On one side are the issues of internal and external validity; on
the other, feasibility. The vital last step of the union negotiator is sometimes omitted.
Once the study plan has been formulated, the investigator must decide whether it
adequately addresses the research question and whether it can be implemented with
acceptable levels of error. Often the answer is no, and there is a need to begin the
process anew. But take heart! Good scientists distinguish themselves not so much by
their uniformly good research ideas as by their tenacity in turning over those that
won’t work and trying again.

SUMMARY

1. The anatomy of research is the set of tangible elements that make up the study
plan: the research question and its significance, and the design, study subjects,
and measurement approaches. The challenge is to design elements that are fast,
inexpensive, and easy to implement.

2. The physiology of research is how the study works. The study findings are used
to draw inferences about what happened in the study sample (internal validity),
and about events in the world outside (external validity). The challenge here is to
design and implement a study plan with adequate control over two major threats
to these inferences: random error (chance) and systematic error (bias).

3. In designing a study the investigator may find it helpful to consider the relationships
between the research question (what she wants to answer), the study plan (what
the study is designed to answer), and the actual study (what the study will actually
answer, given the errors of implementation that can be anticipated).

4. A good way to develop the study plan is to begin with a one-sentence version
of the research question and expand this into an outline that sets out the study
elements in a standardized sequence. Later on the study plan will be expanded
into the protocol and the operations manual.

5. Good judgment by the investigator and advice from colleagues are needed for the
many trade-offs involved, and for determining the overall viability of the project.



Chapter 1 ■ Getting Started: The Anatomy and Physiology of Clinical Research 15

APPENDIX 1.1

Outline of a Study∗

Element Example

Title Relationship between Level of Experience and Degree of Clinical Utility of
Third Heart Sound Auscultation.

Research question Do auscultatory assessments of third heart sound by more experienced
physicians result in higher sensitivity and specificity for detecting left
ventricular dysfunction than assessments by less experienced physicians?

Significance 1. Auscultation of third heart sounds is a standard physical examination
indicator of heart failure that all medical students have learned for 100
years.

2. The degree to which this clinical assessment, which many physicians
find difficult, actually detects abnormal left ventricular function has not
been studied.

3. There are no studies of whether auscultatory measurements of third
heart sounds by cardiology fellows and attendings are more accurate
than those of residents and medical students.

Study design Cross-sectional analytic study

Subjects

• Entry criteria
• Sampling design

Adults referred for left heart catheterization
Consecutive sample of consenting patients

Variables

• Predictor Level of experience of physicians

• Outcome 1. Area under the receiver operating characteristic curve for third heart
sound score (AUC) in relation to higher LV diastolic pressure by
catheterization

2. AUC in relation to lower ejection fraction by cardiac echo
3. AUC in relation to B natriuretic protein

Statistical issues Hypothesis: More experienced physicians will have more favorable AUCs

Sample size (to be filled in after reading Chapter 6)

∗Fortunately this study, designed and implemented by clinical investigators in training at our institution, found that more
experienced physicians were better at detecting clinically significant third heart sounds (1).

REFERENCE

1. Marcus GM, Vessey J, Jordan MV, et al. Relationship between accurate auscultation of a
clinically useful third heart sound and level of experience. Arch Intern Med 2006;166:1–7.





2 Conceiving The Research

Question
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The research question is the uncertainty about something in the population that
the investigator wants to resolve by making measurements on her study subjects
(Fig. 2.1). There is no shortage of good research questions, and even as we succeed
in producing answers to some questions, we remain surrounded by others. Recent
clinical trials, for example, have established that treatments that block the synthesis
of estradiol (aromatase inhibitors) reduce the risk of breast cancer in women who
have had early stage cancer (1). But now there are new questions: How long should
treatment be continued, what is the best way to prevent the osteoporosis that is an
adverse effect of these drugs, and does this treatment prevent breast cancer in patients
with BRCA 1 and BRCA 2 mutations?
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FIGURE 2.1. Choosing the research question and designing the study plan.
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The challenge in searching for a research question is not a shortage of uncertain-
ties; it is the difficulty of finding an important one that can be transformed into a
feasible and valid study plan. This chapter presents strategies for accomplishing this
in arenas that range from classical clinical research to the newly popular translational
research.

ORIGINS OF A RESEARCH QUESTION

For an established investigator the best research questions usually emerge from the
findings and problems she has observed in her own prior studies and in those of other
workers in the field. A new investigator has not yet developed this base of experience.
Although a fresh perspective can sometimes be useful by allowing a creative person to
conceive new approaches to old problems, lack of experience is largely an impediment.

Mastering the Literature
It is important to master the published literature in an area of study; scholarship is a
necessary ingredient to good research. A new investigator should conduct a thorough
search of published literature in the area of study. Carrying out a systematic review is
a great first step in developing and establishing expertise in a research area, and the
underlying literature review can serve as background for grant proposals and research
reports. Recent advances may be presented at research meetings or just be known to
active investigators in a particular field long before they are published. Thus, mastery
of a subject entails participating in meetings and building relationships with experts
in the field.

Being Alert to New Ideas and Techniques
In addition to the medical literature as a source of ideas for research questions, all
investigators find it helpful to attend conferences in which recent work is presented.
As important as the presentations are the opportunities for informal conversations with
other scientists during the breaks. A new investigator who overcomes her shyness and
engages a speaker at the coffee break will often find the experience richly rewarding,
and occasionally will find she has a new senior colleague. Even better, for a speaker
known in advance to be especially relevant, it may be worthwhile to look up her recent
publications and contact her in advance to arrange a meeting during the conference.

A skeptical attitude about prevailing beliefs can stimulate good research ques-
tions. For example, it has been widely believed that lacerations that extend through
the dermis require sutures to assure rapid healing and a satisfactory cosmetic out-
come. Alternative approaches that would not require local anesthetics and be faster,
less expensive, and produce as good a cosmetic result were widely believed to be un-
achievable. However, Quinn et al. noted personal experience and case series evidence
that wounds repair themselves regardless of whether wound edges are approximated.
They carried out a randomized trial in which patients with hand lacerations less than
2 cm in length all received tap water irrigation and a 48-hour antibiotic dressing, but
one group receive conventional sutures while the other did not. The group treated
with sutures had a more painful and time-consuming treatment but subsequent
blinded assessment revealed similar time to healing and cosmetic results (2).

The application of new technologies often generates new insights and questions
about familiar clinical problems, which in turn can generate new paradigms (3).
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Recent advances in imaging and in techniques for molecular and genetic analyses,
for example, have spawned a large number of clinical research studies that have
informed extraordinary advances in the use of these technologies in clinical medicine.
Similarly, taking a new concept or finding from one field and applying it to a
problem in a different field can lead to good research questions. Low bone density,
for example, is widely recognized as a risk factor for fractures. Investigators applied
this technology to other populations and found that women with low bone density
have higher rates of cognitive decline (4), perhaps due to low levels of estrogen over
a lifetime.

Keeping the Imagination Roaming
Careful observation of patients has led to many descriptive studies and is a fruitful
source of research questions. Teaching is also an excellent source of inspiration;
ideas for studies often occur while preparing presentations or during discussions with
inquisitive students. Because there is usually not enough time to develop these ideas
on the spot, it is useful to keep them in a computer file or notebook for future
reference.

There is a major role for creativity in the process of conceiving research questions,
imagining new methods to address old questions and having fun with ideas. There is
also a need for tenacity, for returning to a troublesome problem repeatedly until a
resolution is reached that feels comfortable. Some creative ideas come to mind during
informal conversations with colleagues over lunch; others occur in brainstorming
sessions. Many inspirations are solo affairs that strike while preparing a lecture,
showering, perusing the Internet, or just sitting and thinking. Fear of criticism or
seeming unusual can prematurely quash new ideas. The trick is to put an unresolved
problem clearly in view and allow the mind to run freely toward it.

Choosing a Mentor
Nothing substitutes for experience in guiding the many judgments involved in
conceiving and fleshing in a research question. Therefore an essential strategy for
a new investigator is to apprentice herself to an experienced mentor who has the
time and interest to work with her regularly. A good mentor will be available for
regular meetings and informal discussions, encourage creative ideas, provide wisdom
that comes from experience, help ensure protected time for research, open doors to
networking and funding opportunities, encourage the development of independent
work, and put the new investigator’s name first on grants and publications whenever
possible. Sometimes it is desirable to have more than one mentor, representing
different disciplines. Good relationships of this sort can also provide tangible resources
that are needed—office space, access to clinical populations, datasets and specimen
banks, specialized laboratories, financial resources, and a research team. Choosing a
mentor can be a difficult process, and is perhaps the single most important decision a
new investigator makes.

CHARACTERISTICS OF A GOOD RESEARCH QUESTION

The characteristics of a good research question, assessed in the context of the intended
study design, are that it be feasible, interesting, novel, ethical, and relevant (which
form the mnemonic FINER; Table 2.1).
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TABLE 2.1 FINER Criteria for a Good Research Question

Feasible

Adequate number of subjects
Adequate technical expertise
Affordable in time and money
Manageable in scope

Interesting

Getting the answer intrigues the investigator and her friends

Novel

Confirms, refutes or extends previous findings
Provides new findings

Ethical

Amenable to a study that institutional review board will approve

Relevant

To scientific knowledge
To clinical and health policy
To future research

Feasible
It is best to know the practical limits and problems of studying a question early on,
before wasting much time and effort along unworkable lines.

• Number of subjects. Many studies do not achieve their intended purposes because
they cannot enroll enough subjects. A preliminary calculation of the sample size
requirements of the study early on can be quite helpful (Chapter 6), together
with an estimate of the number of subjects likely to be available for the study,
the number who would be excluded or refuse to participate, and the number who
would be lost to follow-up. Even careful planning often produces estimates that are
overly optimistic, and the investigator should assure that there are enough eligible
willing subjects. It is sometimes necessary to carry out a pilot survey or chart review
to be sure. If the number of subjects appears insufficient, the investigator can
consider several strategies: expanding the inclusion criteria, eliminating unnecessary
exclusion criteria, lengthening the time frame for enrolling subjects, acquiring
additional sources of subjects, developing more precise measurement approaches,
inviting colleagues to join in a multicenter study, and using a different study design.

• Technical expertise. The investigators must have the skills, equipment, and ex-
perience needed for designing the study, recruiting the subjects, measuring the
variables, and managing and analyzing the data. Consultants can help to shore
up technical aspects that are unfamiliar to the investigators, but for major areas
of the study it is better to have an experienced colleague steadily involved as a
coinvestigator; for example, it is wise to include a statistician as a member of the
research team from the beginning of the planning process. It is best to use familiar
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and established approaches, because the process of developing new methods and
skills is time-consuming and uncertain. When a new approach is needed, such as a
questionnaire, expertise in how to accomplish the innovation should be sought.

• Cost in time and money. It is important to estimate the costs of each component of
the project, bearing in mind that the time and money needed will generally exceed
the amounts projected at the outset. If the projected costs exceed the available
funds, the only options are to consider a less expensive design or to develop
additional sources of funding. Early recognition of a study that is too expensive
or time-consuming can lead to modification or abandonment of the plan before
expending a great deal of effort.

• Scope. Problems often arise when an investigator attempts to accomplish too
much, making many measurements at repeated contacts with a large group of
subjects in an effort to answer too many research questions. The solution is to
narrow the scope of the study and focus only on the most important goals.
Many scientists find it difficult to give up the opportunity to answer interesting
side questions, but the reward may be a better answer to the main question
at hand.

Interesting
An investigator may have many motivations for pursuing a particular research question:
because it will provide financial support, because it is a logical or important next step
in building a career, or because getting at the truth of the matter is interesting.
We like this last reason; it is one that grows as it is exercised and that provides the
intensity of effort needed for overcoming the many hurdles and frustrations of the
research process. However, it is wise to confirm that you are not the only one who
finds a question interesting. Speak with mentors and outside experts before devoting
substantial energy to develop a research plan or grant proposal that peers and funding
agencies may consider dull.

Novel
Good clinical research contributes new information. A study that merely reiter-
ates what is already established is not worth the effort and cost. The novelty
of a proposed study can be determined by thoroughly reviewing the literature,
consulting with experts who are familiar with ongoing research, and searching
lists of projects that have been funded using the NIH Computer Retrieval of
Information on Scientific Projects (CRISP). Although novelty is an important cri-
terion, a research question need not be totally original—it can be worthwhile
to ask whether a previous observation can be replicated, whether the findings
in one population also apply to others, or whether improved measurement tech-
niques can clarify the relationship between known risk factors and a disease. A
confirmatory study is particularly useful if it avoids the weaknesses of previous
studies.

Ethical
A good research question must be ethical. If the study poses unacceptable physical
risks or invasion of privacy (Chapter 14), the investigator must seek other ways to
answer the question. If there is uncertainty about whether the study is ethical, it is
helpful to discuss it at an early stage with a representative of the institutional review
board.
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Relevant
Among the characteristics of a good research question, none is more important than
its relevance. A good way to decide about relevance is to imagine the various outcomes
that are likely to occur and consider how each possibility might advance scientific
knowledge, influence practice guidelines and health policy, or guide further research.
When relevance is uncertain, it is useful to discuss the idea with mentors, clinicians or
experts in the field.

DEVELOPING THE RESEARCH QUESTION AND STUDY
PLAN

It helps a great deal to write down the research question and a brief (one-page) outline
of the study plan at an early stage (Appendix 1.1). This requires some self-discipline,
but it forces the investigator to clarify her ideas about the plan and to discover specific
problems that need attention. The outline also provides a basis for specific suggestions
from colleagues.

Problems and Solutions
Two general solutions to the problems involved in developing a research question
deserve special emphasis. The first is the importance of getting good advice. We
recommend a research team that includes representatives of each of the major
disciplines involved in the study, and that includes at least one senior scientist. In
addition, it is a good idea to consult with specialists who can guide the discovery of
previous research on the topic and the choice and design of measurement techniques.
Sometimes a local expert will do, but it is often useful to contact individuals in other
institutions who have published pertinent work on the subject. A new investigator
may be intimidated by the prospect of writing or calling someone she knows only
as an author in the Journal of the American Medical Association, but most scientists
respond favorably to such requests for advice.

The second solution is to allow the study plan to gradually emerge from an
iterative process of designing, reviewing, pretesting, and revising. Once the one-page
study plan is specified, advice from colleagues will usually result in important changes.
As the protocol gradually takes shape, a small pretest of the number and willingness
of the potential subjects may lead to changes in the recruitment plan. The preferred
imaging test may turn out to be prohibitively costly and a less expensive alternative
sought. The qualities needed in the investigator for these planning stages of research
are creativity, tenacity, and judgment.

Primary and Secondary Questions
Many studies have more than one research question. Experiments often address the
effect of the intervention on more than one outcome; for example, the Women’s
Health Initiative was designed to determine whether reducing dietary fat intake
would reduce the risk of breast cancer, but an important secondary hypothesis was
to examine the effect on coronary events (5). Almost all cohort and case–control
studies look at several risk factors for each outcome. The advantage of designing
a study with several research questions is the efficiency that can result, with several
answers emerging from a single study. The disadvantages are the increased complexity
of designing and implementing the study and of drawing statistical inferences when
there are multiple hypotheses (Chapter 5). A sensible strategy is to establish a single
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primary research question around which to focus the study plan and sample size
estimate, adding secondary research questions about other predictors or outcomes
that may also produce valuable conclusions.

TRANSLATIONAL RESEARCH

Translational research refers to studies of how to translate findings from the ivory
tower into the ‘‘real world.’’ Translational research (6) comes in two main flavors
(Fig. 2.2):

• Applying basic science findings from laboratory research in clinical studies of patients
(sometimes abbreviated as T1 research), and

• Applying the findings of these clinical studies to alter health practices in the
community (sometimes abbreviated as T2 research).

Both forms of translational research require identifying a ‘‘translation’’ opportu-
nity. Just as a literary translator first needs to find a novel or poem that merits trans-
lating, a translational research investigator must first identify a worthwhile scientific
finding. Translational research projects are usually limited by the quality of the source
material, so think ‘‘Tolstoy’’: the more valuable the result of a laboratory experiment
or a clinical trial, the more likely a translational project will have merit. Pay attention to
colleagues when they talk about their latest findings, to presentations at national meet-
ings about novel methods, and to speculation about mechanisms in published reports.

Translating Research from the Laboratory to Clinical Practice (T1)
A host of new tools have become available for clinical investigations, including
analysis of single nucleotide polymorphisms (SNPs), gene expression arrays, imaging
and proteomics. From the viewpoint of a clinical investigator, there is nothing
intrinsically different about any of these measurements or test results. The chapters on
measurements will be useful in planning studies involving these types of measurements,

Laboratory
Research

Population
Research

Clinical
Research

T1 T2

FIGURE 2.2. Transitional research is the component of clinical research that interacts
with basic science research (hatched area T1) or with population research (hatched area
T2).
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as will the advice about study design, population samples, and sample size. Especially
relevant will be the information about multiple hypothesis testing.

Compared with ordinary clinical research, being a successful T1 translational
researcher requires having an additional skill set or identifying a collaborator with
those skills. Bench-to-bedside research necessitates a thorough understanding of the
underlying basic science. Although many clinical researchers believe that they can
master this knowledge—just like many laboratory-based researchers believe doing
clinical research requires no special training—in reality, the skills hardly overlap. For
example, suppose a basic scientist has identified a gene that affects circadian rhythm in
mice. A clinical investigator has access to a cohort study with data on sleep cycles in
people and a bank of stored DNA, and wants to study whether there is an association
between polymorphisms in the human homolog of that gene and sleep in people. In
order to propose a T1 study looking at that association she needs collaborators who
are familiar with that gene and with the advantages and limitations of the various
methods of genotyping.

Similarly, imagine that a laboratory-based investigator has discovered a unique
pattern of gene expression in tissue biopsy samples from patients with breast cancer.
She should not propose a study of its use as a diagnostic test for breast cancer
without collaborating with someone who understands the importance of test-retest
reliability, receiver operating curves, sampling and blinding, and the effects of prior
probability of disease on the applicability of her discovery. Good translational re-
search requires expertise in more than one area. Thus a research team interested in
testing a new drug needs scientists familiar with molecular biology, pharmacokinetics,
pharmacodynamics, Phase I clinical trials, and the practice of medicine.

Translating Research from Clinical Studies to Populations (T2)
Studies that attempt to apply findings from clinical trials to larger and more diverse
populations often require expertise in identifying high-risk or underserved groups,
understanding the difference between screening and diagnosis, and knowledge of
how to implement changes in health care delivery systems. On a practical level, this
kind of research usually needs access to large groups of patients (or clinicians), such
as those enrolled in health plans. Support and advice from the department chair, the
chief of the medical staff at an affiliated hospital, or the leader of the local medical
society, may be helpful when planning these studies.

Some investigators take a short cut when doing this type of translational research,
studying patients in their colleagues’ practices (e.g., a housestaff-run clinic in an
academic medical center) rather than involving practitioners in the community. This
is a bit like translating Aristophanes into modern Greek—it will still not be very useful
for English-speaking readers. Chapter 18 emphasizes the importance of getting as far
into the community as possible.

The sampling scheme is often a problem when studying whether research results
can be applied in general populations. For example, in a study of whether a new
office-based diet and exercise program will be effective in the community, it may
not be possible to randomly assign individual patients. One solution would be to
use physician practices as the unit of randomization; this will almost certainly require
collaborating with an expert on cluster sampling and clustered analyses. Many T2
research projects use proxy ‘‘process’’ variables as their outcomes. For example, if
clinical trials have established that a new treatment reduces mortality from sepsis, a
translational research study might not need to have mortality as the outcome. Rather,
it might examine different approaches to implementing the treatment protocol, and
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use the percentage of patients with sepsis who were placed on the protocol as the
outcome of the study.

SUMMARY

1. All studies should start with a research question that addresses what the investi-
gator would like to know. The goal is to find one that can be developed into a
good study plan.

2. One key ingredient for developing a research question is scholarship that is
acquired by a thorough and continuing review of the work of others, both
published and unpublished. Another key ingredient is experience, and the single
most important decision a new investigator makes is her choice of one or two
senior scientists to serve as her mentor(s).

3. Good research questions arise from medical articles and conferences, from critical
thinking about clinical practices and problems, from applying new methods to
old issues, and from ideas that emerge from teaching and daydreaming.

4. Before committing much time and effort to writing a proposal or carrying out a
study, the investigator should consider whether the research question and study
plan are ‘‘FINER’’: feasible, interesting, novel, ethical, and relevant.

5. Early on, the research question should be developed into a one-page written study
plan that specifically describes how many subjects will be needed, and how the
subjects will be selected and the measurements made.

6. Developing the research question and study plan is an iterative process that
includes consultations with advisors and friends, a growing familiarity with the
literature, and pilot studies of the recruitment and measurement approaches. The
qualities needed in the investigator are creativity, tenacity, and judgment.

7. Most studies have more than one question, but it is useful to focus on a single
primary question in designing and implementing the study

8. Translational research is a type of clinical research that studies the application
of basic science findings in clinical studies of patients (T1), and how to apply
these findings to improve health practices in the community (T2); it requires
collaborations from laboratory to population-based investigators, using the
clinical research methods presented in this book.
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3 Choosing the Study

Subjects: Specification,

Sampling, and Recruitment

Stephen B. Hulley, Thomas B. Newman,
and Steven R. Cummings

A good choice of study subjects serves the vital purpose of ensuring that the findings
in the study accurately represent what is going on in the population of interest
(Fig. 3.1). The protocol must specify a sample of subjects that can be studied at
an acceptable cost in time and money, yet one that is large enough to control
random error and representative enough to allow generalizing the study findings to
populations of interest. An important precept here is that generalizability is rarely a
simple yes-or-no matter; it is a complex qualitative judgment that is highly dependent
on the investigator’s choice of population and of sampling design.

We will come to the issue of choosing the appropriate number of study subjects
in Chapter 6. In this chapter we address the process of specifying and sampling the
kinds of subjects who will be representative and feasible. We also discuss strategies
for recruiting these subjects to participate in the study.
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FIGURE 3.1. Choosing study subjects that represent the population.
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BASIC TERMS AND CONCEPTS

Populations and Samples
A population is a complete set of people with a specified set of characteristics, and
a sample is a subset of the population. In lay usage, the characteristics that define
a population are geographic—the population of Canada. In research the defining
characteristics are also clinical, demographic, and temporal:

• Clinical and demographic characteristics define the target population, the large
set of people throughout the world to which the results will be generalized—all
teenagers with asthma, for example.

• The accessible population is a geographically and temporally defined subset of the
target population that is available for study—teenagers with asthma living in the
investigator’s town this year.

• The study sample is the subset of the accessible population that participates in the
study.

Generalizing the Study Findings
The classic Framingham Study was an early approach to designing a study that would
allow inferences from findings observed in a sample to be applied to a population
(Fig. 3.2). The sampling design called for listing all the adult residents of the town and
then asking every second person to participate. This ‘‘systematic’’ sampling design
is not as tamperproof as a true random sample (as noted later in this chapter), but
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FIGURE 3.2. Inferences in generalizing from the study subjects to the target populations.
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two more serious concerns were the facts that one-third of the Framingham residents
selected for the study refused to participate, and that in their place the investigators
accepted other residents who had heard about the study and volunteered (1). Because
respondents are often healthier than nonrespondents, especially if they are volunteers,
the characteristics of the actual sample undoubtedly differed from those of the
intended sample. Every sample has some errors, however, and the issue is how much
damage has been done. The Framingham Study sampling errors do not seem large
enough to invalidate the conclusion that the findings of the study—that hypertension is
a risk factor for coronary heart disease (CHD)—can be generalized to all the residents
of Framingham.

The next concern is the validity of generalizing the finding that hypertension
is a risk factor for CHD from the accessible population of Framingham residents
to target populations elsewhere. This inference is more subjective. The town of
Framingham was selected from the universe of towns in the world, not with a scientific
sampling design, but because it seemed fairly typical of middle-class residential
communities in the United States and was convenient to the investigators. The
validity of generalizing the Framingham risk relationships to populations in other
parts of the country involves the precept that, in general, analytic studies and
clinical trials that address biologic relationships produce more widely generalizable
results across diverse populations than descriptive studies that address distributions
of characteristics. For example, the strength of hypertension as a risk factor for
CHD is similar in Caucasian Framingham residents to that observed in inner city
African Americans, but the prevalence of hypertension is much higher in the latter
population.

Steps in Designing the Protocol for Acquiring Study Subjects
The inferences in Fig. 3.2 are presented from right to left, the sequence used for
interpreting the findings of a completed study. An investigator who is planning a
study reverses this sequence, beginning on the left (Fig. 3.3). She begins by specifying
the clinical and demographic characteristics of the target population that will serve the
research question well. She then uses geographic and temporal criteria to specify a
study sample that is representative and practical.

SELECTION CRITERIA

An investigator wants to study the efficacy of low dose testosterone versus placebo for
enhancing libido in menopause. She begins by creating selection criteria that define
the population to be studied.

Establishing Inclusion Criteria
The inclusion criteria define the main characteristics of the target population that
pertain to the research question (Table 3.1). Age is often a crucial factor. In this study
the investigators might decide to focus on women in their fifties, reasoning that in
this group the benefit-to-harm ratio of the drug might be optimal, but another study
might include older decades. Incorporating African American, Hispanic, and Asian
women in the study would appear to expand generalizability, but it’s important to
realize that the increase in generalizability is illusory unless there are enough women
of each race to statistically test for the presence of an ‘‘interaction’’ (an effect in one
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FIGURE 3.3. Steps in designing the protocol for choosing the study subjects.

race that is different from that in other races, Chapter 9); this is a large number, and
most studies are not powered to discover such interactions.

Specifying clinical characteristics often involves difficult judgments, not only
about which factors are important to the research question, but about how to define
them. How, for example, would an investigator put into practice the criterion that
the subjects be in ‘‘good general health’’? She might decide not to include patients
with diseases that might be worsened by the testosterone treatment (atherosclerosis)
or interfere with follow-up (metastatic cancer).

The selection criteria that address the geographic and temporal characteristics
of the accessible population may involve trade-offs between scientific and practical
goals. The investigator may find that patients at her own hospital are an available and
inexpensive source of subjects. But she must consider whether peculiarities of the local
referral patterns might interfere with generalizing the results to other populations.
On these and other decisions about inclusion criteria, there is no single course of
action that is clearly right or wrong; the important thing is to make decisions that are
sensible, that can be used consistently throughout the study, and that will provide a
basis for knowing to whom the published conclusions apply.

Establishing Exclusion Criteria
Exclusion criteria indicate subsets of individuals who would be suitable for the
research question were it not for characteristics that might interfere with the success
of follow-up efforts, the quality of the data, or the acceptability of randomized
treatment (Table 3.1). Clinical trials differ somewhat from observational studies in
being more likely to have exclusions mandated by concern for the safety of the
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TABLE 3.1 Designing Selection Criteria for a Clinical Trial of Low Dose
Testosterone to Enhance Libido in Menopause

Design Feature Example

Inclusion criteria
(be specific)

Specifying populations relevant to
the research question and efficient
for study:

Demographic characteristics White women 50 to 60 years old

Clinical characteristics Good general health
Has a sexual partner

Geographic (administrative)
characteristics

Patients attending clinic at the
investigator’s hospital

Temporal characteristics Between January 1 and December
31 of specified year

Exclusion criteria
(be parsimonious)

Specifying subsets of the
population that will not be studied
because of:

A high likelihood of being lost to
follow-up

Alcoholic or plan to move out of
state

An inability to provide good data Disoriented or have a language
barrier*

Being at high risk of possible
adverse effects

History of myocardial infarction or
stroke

∗ Alternatives to exclusion (when these subgroups are important to the research question) would be collecting nonverbal
data or using bilingual staff and questionnaires.

participant (Chapter 10). A good general rule that keeps things simple and preserves
the number of potential study subjects is to have as few exclusion criteria as possible.

Exclusion criteria can be a two-edged sword. Including alcoholics in the testos-
terone trial might provide subjects with low baseline libido, for example, but this
potential advantage could be accompanied by greater problems with adherence to
study treatment and with follow-up; the investigator may decide to exclude alcoholics
if she believes that adherence to study protocol is the more important consideration.
(She will then face the problem of developing specific criteria for classifying whether
an individual is alcoholic.)

Clinical versus Community Populations
If the research question involves patients with a disease, hospitalized or clinic-based
patients are easier to find, but selection factors that determine who comes to the
hospital or clinic may have an important effect. For example, a specialty clinic at a
tertiary care medical center tends to accumulate patients with serious forms of the
disease that give a distorted impression of the commonplace features and prognosis.
For research questions that pertain to diagnosis, treatment, and prognosis of patients
in medical settings, sampling from primary care clinics can be a better choice.
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Another common option in choosing the sample is to select subjects in the
community who represent a healthy population. These samples are often recruited
using mass mailings and advertising, and are not fully representative of a general
population because they must (a) volunteer, (b) fit inclusion and exclusion criteria,
and (c) agree to be included in the study. True ‘‘population-based’’ samples are
difficult and expensive to recruit, but useful for guiding public health and clinical
practice in the community. One of the largest and best examples is the National
Health and Nutrition Examination Survey (NHANES), a probability sample of all US
residents.

The size and diversity of a sample can be increased by collecting data by mail or
telephone, by collaborating with colleagues in other cities, or by using preexisting
data sets such as NHANES and Medicare. Electronically accessible datasets have come
into widespread use in clinical research and may be more representative of national
populations and less time-consuming than other possibilities (Chapter 13).

SAMPLING

Often the number of people who meet the selection criteria is too large, and there is
a need to select a sample (subset) of the population for study.

Convenience Samples
In clinical research the study sample is often made up of people who meet the entry
criteria and are easily accessible to the investigator. This is termed a convenience
sample. It has obvious advantages in cost and logistics, and is a good choice for many
research questions.

A convenience sample can minimize volunteerism and other selection biases by
consecutively selecting every accessible person who meets the entry criteria. Such
a consecutive sample is especially desirable when it amounts to taking the entire
accessible population over a long enough period to include seasonal variations or
other temporal changes that are important to the research question. The validity of
using a sample is the premise that, for the purpose of answering the research question
at hand, it sufficiently represents the target population. With convenience samples this
requires a subjective judgment.

Probability Samples
Sometimes, particularly with descriptive research questions, there is a need for a
scientific basis for generalizing the findings in the study sample to the population.
Probability sampling, the gold standard for ensuring generalizability, uses a random
process to guarantee that each unit of the population has a specified chance of being
included in the sample. It is a scientific approach that provides a rigorous basis for
estimating the fidelity with which phenomena observed in the sample represent those
in the population, and for computing statistical significance and confidence intervals.
There are several versions of this approach.

A simple random sample is drawn by enumerating the units of the population
and selecting a subset at random. The most common use of this approach in clinical
research is when the investigator wishes to select a representative subset from a
population that is larger than she needs. To take a random sample of the cataract
surgery patients at her hospital, for example, the investigator could list all such patients
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on the operating room schedules for the period of study, then use a table of random
numbers to select individuals for study (Appendix 3.1).

A systematic sample resembles a simple random sample in first enumerating the
population but differs in that the sample is selected by a preordained periodic process
(e.g., the Framingham approach of taking every second person from a list of town
residents). Systematic sampling is susceptible to errors caused by natural periodicities
in the population, and it allows the investigator to predict and perhaps manipulate
those who will be in the sample. It offers no logistic advantages over simple random
sampling, and in clinical research it is rarely a better choice.

A stratified random sample involves dividing the population into subgroups
according to characteristics such as sex or race and taking a random sample from
each of these ‘‘strata.’’ The subsamples in a stratified sample can be weighted to draw
disproportionately from subgroups that are less common in the population but of
special interest to the investigator. In studying the incidence of toxemia in pregnancy,
for example, the investigator could stratify the population by race and then sample
equal numbers from each stratum. This would yield incidence estimates of comparable
precision from each racial group.

A cluster sample is a random sample of natural groupings (clusters) of individuals
in the population. Cluster sampling is very useful when the population is widely
dispersed and it is impractical to list and sample from all its elements. Consider, for
example, the problem of reviewing the hospital records of patients with lung cancer
selected randomly from a statewide list of discharge diagnoses; patients could be
studied at lower cost by choosing a random sample of the hospitals and taking the
cases from these. Community surveys often use a two-stage cluster sample: a random
sample is drawn from city blocks enumerated on a map and a field team visits the
blocks in the sample, lists all the addresses in each, and selects a subsample for study by
a second random process. A disadvantage of cluster sampling is the fact that naturally
occurring groups are often relatively homogeneous for the variables of interest; each
city block, for example, tends to have people of uniform socioeconomic status. This
means that the effective sample size will be somewhat smaller than the number of
subjects, and that statistical analysis must take the clustering into account.

Summarizing the Sampling Design Options
The use of descriptive statistics and tests of statistical significance to draw inferences
about the population from observations in the study sample is based on the assumption
that a probability sample has been used. But in clinical research a random sample
of the whole target population is almost never possible. Convenience sampling,
preferably with a consecutive design, is a practical approach that is often suitable. The
decision about whether the proposed sampling design is satisfactory requires that the
investigator make a judgment: for the research question at hand, will the conclusions
of the study be similar to those that would result from studying a true probability
sample of the target population?

RECRUITMENT

The Goals of Recruitment
An important factor to consider in choosing the accessible population and sampling
approach is the feasibility of recruiting study participants. There are two main goals:
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(a) to recruit a sample that adequately represents the target population; and (b) to
recruit enough subjects to meet the sample size requirements.

Achieving a Representative Sample
The approach to recruiting a representative sample begins in the design phase with
choosing populations and sampling methods wisely. It ends with implementation,
guarding against errors in applying the entry criteria to prospective study participants,
and monitoring adherence to these criteria as the study progresses.

A particular concern, especially in observational studies, is the problem of non-
response. The proportion of eligible subjects who agree to enter the study (the
response rate) influences the validity of inferring that the sample represents the
population. People who are difficult to reach and those who refuse to participate
once they are contacted tend to be different from people who do enroll. The level of
nonresponse that will compromise the generalizability of the study depends on the
research question and on the reasons for not responding. A nonresponse rate of 25%,
a good achievement in many settings, can seriously distort the observed prevalence
of a disease when the disease itself is a cause of nonresponse. The degree to which
this bias may influence the conclusions of a study can sometimes be estimated during
the study with an intensive effort to acquire additional information on a sample of
nonrespondents.

The best way to deal with nonresponse bias, however, is to minimize the number
of nonrespondents. The problem of failure to make contact with individuals who
have been chosen for the sample can be reduced by designing a systematic series of
repeated contact attempts and by using various methods (mail, email, telephone, home
visit). Among those contacted, refusal to participate can be minimized by improving
the efficiency and attractiveness of the study (especially the initial encounter), by
choosing a design that avoids invasive and uncomfortable tests, by using brochures
and individual discussion to allay anxiety and discomfort, and by providing incentives
such as reimbursing the costs of transportation and providing the results of tests. If
language barriers are prevalent, they can be circumvented by using bilingual staff and
translated questionnaires.

Recruiting Sufficient Numbers of Subjects
Falling short in the rate of recruitment is one of the commonest problems in clinical
research. In planning a study it is safe to assume that the number of subjects
who meet the entry criteria and agree to enter the study will be fewer, sometimes
by several fold, than the number projected at the outset. The solutions to this
problem are to estimate the magnitude of the recruitment problem empirically with
a pretest, to plan the study with an accessible population that is larger than believed
necessary, and to make contingency plans should the need arise for additional
subjects. While the study is in progress it is important to closely monitor progress
in meeting the recruitment goals and tabulate reasons for falling short of the goals;
understanding the proportions of potential subjects lost to the study at various
stages can lead to strategies for enhancing recruitment by reducing some of these
losses.

Sometimes recruitment involves selecting patients who are already known to the
members of the research team (e.g., in a study of a new treatment in patients attending
the investigator’s clinic). Here the chief concern is to present the opportunity for
participation in the study fairly, making clear the advantages and disadvantages. In
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discussing the desirability of participation, the investigator must recognize the special
ethical dilemmas that arise when her advice as the patient’s physician might conflict
with her interests as an investigator (Chapter 14).

Often recruitment involves contacting populations that are not known to the
members of the research team. It is helpful if at least one member of the research
team has previous experience with the approaches for contacting the prospective
subjects. These include screening in work settings or public places such as shopping
malls; sending out large numbers of mailings to listings such as driver’s license holders;
advertising on the Internet; inviting referrals from clinicians; carrying out retrospective
record reviews; and examining lists of patients seen in clinic and hospital settings.
Some of these approaches, particularly the latter two, involve concerns with privacy
invasion that must be considered by the institutional review board.

It may be helpful to prepare for recruitment by getting the support of important
organizations. For example, the investigator can meet with hospital administrators
to discuss a clinic-based sample, and with the leadership of the medical society and
county health department to plan a community screening operation or mailing to
physicians. Written endorsements can be included as an appendix in applications
for funding. For large studies it may be useful to create a favorable climate in the
community by giving public lectures or by advertising through radio, TV, newspaper,
fliers, websites, or mass mailings.

SUMMARY

1. All clinical research is based, philosophically and practically, on the use of a sample
to represent a population.

2. The advantage of sampling is efficiency; it allows the investigator to draw inferences
about a large population by examining a subset at relatively small cost in time and
effort. The disadvantage is the source of error it introduces. If the sample is not
sufficiently representative for the research question at hand, the findings may not
generalize well to the population.

3. In designing a study the first step is to conceptualize the target population with
a specific set of inclusion criteria that establish the demographic and clinical
characteristics of subjects well suited to the research question, an appropriate
accessible population that is geographically and temporally convenient, and a
parsimonious set of exclusion criteria that eliminate subjects who are unethical
or inappropriate to study.

4. The next step is to design an approach to sampling the population. A convenience
sample is often a good choice in clinical research, especially if it is drawn
consecutively. Simple random sampling can be used to reduce the size of
a convenience sample if necessary, and other probability sampling strategies
(stratified and cluster) are useful in certain situations.

5. Finally, the investigator must design and implement strategies for recruiting a
sample of subjects that is large enough to meet the study needs, and that minimizes
bias due to nonresponse and loss to follow-up.
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APPENDIX 3.1

Selecting a Random Sample from a Table of Random
Numbers

10480 15011 01536 81647 91646 02011
22368 46573 25595 85393 30995 89198
24130 48390 22527 97265 78393 64809
42167 93093 06243 61680 07856 16376
37570 33997 81837 16656 06121 91782
77921 06907 11008 42751 27756 53498
99562 72905 56420 69994 98872 31016
96301 91977 05463 07972 18876 20922
89572 14342 63661 10281 17453 18103
85475 36857 53342 53998 53060 59533
28918 79578 88231 33276 70997 79936
63553 40961 48235 03427 49626 69445
09429 93969 52636 92737 88974 33488
10365 61129 87529 85689 48237 52267
07119 97336 71048 08178 77233 13916
51085 12765 51821 51259 77452 16308
02368 21382 52404 60268 89368 19885
01011 54092 33362 94904 31273 04146
52162 53916 46369 58569 23216 14513
07056 97628 33787 09998 42698 06691
48663 91245 85828 14346 09172 30163
54164 58492 22421 74103 47070 25306
32639 32363 05597 24200 38005 13363
29334 27001 87637 87308 58731 00256
02488 33062 28834 07351 19731 92420
81525 72295 04839 96423 24878 82651
29676 20591 68086 26432 46901 20949
00742 57392 39064 66432 84673 40027
05366 04213 25669 26422 44407 44048
91921 26418 64117 94305 26766 25940

To select a 10% random sample, begin by enumerating (listing and numbering)
every element of the population to be sampled. Then decide on a rule for obtaining
an appropriate series of numbers; for example, if your list has 741 elements (which
you have numbered 1 to 741), your rule might be to go vertically down each column
using the first three digits of each number (beginning at the upper left, the numbers
are 104, 223, etc.) and to select the first 74 different numbers that fall in the range
of 1 to 741. Finally, pick a starting point by an arbitrary process. (Closing your eyes
and putting your pencil on some number in the table is one way to do it.)
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4 Planning the

Measurements: Precision

and Accuracy

Stephen B. Hulley, Jeffrey N. Martin and Steven R. Cummings

Measurements describe phenomena in terms that can be analyzed statistically. The
validity of a study depends on how well the variables designed for the study represent
the phenomena of interest (Fig. 4.1). How well does a prostate-specific antigen (PSA)
level signal cancer in the prostate that will soon metastasize, for example, or an
insomnia questionnaire detect amount and quality of sleep?

This chapter begins by considering how the choice of measurement scale influ-
ences the information content of the measurement. We then turn to the central goal of
minimizing measurement error: how to design measurements that are relatively pre-
cise (free of random error) and accurate (free of systematic error), thereby enhancing
the validity of drawing inferences from the study to the universe. We conclude with
some considerations for clinical research, noting especially the advantages of storing
specimens for later measurements.

Research 
question

Target
population

Study plan Actual
study

Intended
sample

Actual
subjects

Design Implement

Infer Infer

TRUTH IN THE
UNIVERSE

TRUTH IN THE
STUDY

EXTERNAL
VALIDITY

INTERNAL
VALIDITY

FINDINGS IN 
THE STUDY

Error Error

Phenomena
of interest

Intended
variables

Actual
measurements

FIGURE 4.1. Designing measurements that represent the phenomena of interest.
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MEASUREMENT SCALES

Table 4.1 presents a simplified classification of measurement scales and the information
that results. The classification is important because some types of variables are more
informative than others, adding power to the study and reducing sample size
requirements.

Continuous Variables
Continuous variables are quantified on an infinite scale. The number of possible
values of body weight, for example, is limited only by the sensitivity of the machine
that is used to measure it. Continuous variables are rich in information.

A scale whose units are limited to integers (such as the number of cigarettes
smoked per day) is termed discrete. Discrete variables that have a considerable number
of possible values can resemble continuous variables in statistical analyses and be
equivalent for the purpose of designing measurements.

Categorical Variables
Phenomena that are not suitable for quantification can often be measured by classifying
them in categories. Categorical variables with two possible values (dead or alive)
are termed dichotomous. Categorical variables with more than two categories
(polychotomous) can be further characterized according to the type of information
they contain.

Nominal variables have categories that are not ordered; type O blood, for example,
is neither more nor less than type B; nominal variables tend to have a qualitative and
absolute character that makes them straightforward to measure. Ordinal variables

TABLE 4.1 Measurement Scales
Type of
Measurement

Characteristics
of Variable Example

Descriptive
Statistics

Information
Content

Categorical∗

Nominal Unordered
categories

Sex; blood type;
vital status

Counts,
proportions

Lower

Ordinal Ordered
categories with
intervals that are
not quantifiable

Degree of pain In addition to the
above: medians

Intermediate

Continuous Ranked spectrum Weight; In addition to the Higher
or ordered with quantifiable number of above: means,
discrete† intervals cigarettes/day standard

deviations

∗ Categorical measurements that contain only two classes (e.g., sex) are termed dichotomous.
† Continuous variables have an infinite number of values (e.g., weight), whereas discrete variables are limited to
integers (e.g., number of cigarettes/day). Discrete variables that are ordered (e.g., arranged in sequence from few
to many) and that have a large number of possible values resemble continuous variables for practical purposes of
measurement and analysis.
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have categories that do have an order, such as severe, moderate, and mild pain. The
additional information is an advantage over nominal variables, but because ordinal
variables do not specify a numerical or uniform difference between one category and
the next, the information content is less than that of discrete variables.

Choosing a Measurement Scale
A good general rule is to prefer continuous variables, because the additional in-
formation they contain improves statistical efficiency. In a study comparing the
antihypertensive effects of several treatments, for example, measuring blood pressure in
millimeters of mercury allows the investigator to observe the magnitude of the change
in every subject, whereas measuring it as hypertensive versus normotensive would limit
the assessment. The continuous variable contains more information, and the result is
a study with more power and/or a smaller sample size (Chapter 6).

The rule has some exceptions. If the research question involves the determinants
of low birth weight, for example, the investigator would be more concerned with
babies whose weight is so low that their health is compromised than with differences
observed over the full spectrum of birth weights. In this case she is better off with a
large enough sample to be able to analyze the results with a dichotomous outcome like
the proportion of babies whose weight is below 2,500 g. Even when the categorical
data are more meaningful, however, it is still best to collect the data as a continuous
variable. This leaves the analytic options open: to change the cutoff point that defines
low birth weight (she may later decide that 2,350 g is a better value for identifying
babies at increased risk of developmental abnormalities), or to fall back on the more
powerful analysis of the predictors of the full spectrum of weight.

Similarly, when there is the option of designing the number of response categories
in an ordinal scale, as in a question about food preferences, it is often useful to provide
a half-dozen categories that range from strongly dislike to extremely fond of. The results
can later be collapsed into a dichotomy (dislike and like), but not vice versa.

Many characteristics, particularly symptoms (pain) or aspects of lifestyle, are
difficult to describe with categories or numbers. But these phenomena often have
important roles in diagnostic and treatment decisions, and the attempt to measure
them is an essential part of the scientific approach to description and analysis. This
is illustrated by the SF-36, a standardized questionnaire for assessing quality of
life (1). The process of classification and measurement, if done well, can increase the
objectivity of our knowledge, reduce bias, and provide a means of communication.

PRECISION

The precision of a variable is the degree to which it is reproducible, with nearly
the same value each time it is measured. A beam scale can measure body weight
with great precision, whereas an interview to measure quality of life is more likely to
produce values that vary from one observer to the next. Precision has a very important
influence on the power of a study. The more precise a measurement, the greater the
statistical power at a given sample size to estimate mean values and to test hypotheses
(Chapter 6).

Precision (also called reproducibility, reliability, and consistency) is a function
of random error (chance variability); the greater the error, the less precise the
measurement. There are three main sources of random error in making measurements.
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• Observer variability refers to variability in measurement that is due to the observer,
and includes such things as choice of words in an interview and skill in using a
mechanical instrument.

• Instrument variability refers to variability in the measurement due to changing
environmental factors such as temperature, aging mechanical components, different
reagent lots, and so on.

• Subject variability refers to intrinsic biologic variability in the study subjects due
to such things as fluctuations in mood and time since last medication.

Assessing Precision
Precision is assessed as the reproducibility of repeated measurements, either com-
paring measurements made by the same person (within-observer reproducibility)
or different people (between-observer reproducibility). Similarly, it can be assessed
within or between instruments.

The reproducibility of continuous variables is often expressed as the within-
subject standard deviation. However, if a ‘‘Bland-Altman’’ plot (2) of the within-
subject standard deviation versus that subject’s mean demonstrates a linear association,
then the preferred approach is the coefficient of variation (within-subject standard
deviation divided by the mean). Correlation coefficients should be avoided (2). For
categorical variables, percent agreement and the kappa statistic (3) are often used
(Chapter 12).

Strategies for Enhancing Precision
There are five approaches to minimizing random error and increasing the precision of
measurements (Table 4.2):

1. Standardizing the measurement methods. All study protocols should include op-
erational definitions (specific instructions for making the measurements). This
includes written directions on how to prepare the environment and the subject,
how to carry out and record the interview, how to calibrate the instrument, and so
forth (Appendix 4.1). This set of materials, part of the operations manual, is essen-
tial for large and complex studies and recommended for smaller ones. Even when
there is only a single observer, specific written guidelines for making each mea-
surement will help her performance to be uniform over the duration of the study
and serve as the basis for describing the methods when the results are published.

2. Training and certifying the observers. Training will improve the consistency of
measurement techniques, especially when several observers are involved. It is often
desirable to design a formal test of the mastery of the techniques specified in the
operations manual and to certify that observers have achieved the prescribed level
of performance (Chapter 17).

3. Refining the instruments. Mechanical and electronic instruments can be engi-
neered to reduce variability. Similarly, questionnaires and interviews can be written
to increase clarity and avoid potential ambiguities (Chapter 15).

4. Automating the instruments. Variations in the way human observers make mea-
surements can be eliminated with automatic mechanical devices and self-response
questionnaires.

5. Repetition. The influence of random error from any source is reduced by repeating
the measurement, and using the mean of the two or more readings. Precision will
be substantially increased by this strategy, the primary limitation being the added
cost and practical difficulties of repeating the measurements.
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TABLE 4.2 Strategies for Reducing Random Error in Order to Increase
Precision, with Illustrations from a Study of Antihypertensive
Treatment

Strategy to
Reduce Random Error

Source of
Random Error

Example of
Random Error

Example of Strategy
to Prevent the Error

1. Standardizing the
measurement
methods in an
operations manual

Observer Variation in blood
pressure (BP)
measurement due to
variable rate of cuff
deflation (sometimes
faster than 2 mm
Hg/second and
sometimes slower)

Specify that the cuff be
deflated at 2 mm
Hg/second

Subject Variation in BP due to
variable length of quiet
sitting

Specify that subject sit in
a quiet room for 5
minutes before BP
measurement

2. Training and
certifying the
observer

Observer Variation in BP due to
variable observer
technique

Train observer in
standard techniques

3. Refining the
instrument

Instrument and
observer

Variation in BP due to
digit preference (e.g., the
tendency to round
number to a multiple of 5)

Design instrument that
conceals BP reading until
after it has been recorded

4. Automating the
instrument

Observer Variation in BP due to
variable observer
technique

Use automatic BP
measuring device

Subject Variation in BP due to
emotional reaction to
observer by subject

Use automatic BP
measuring device

5. Repeating the
measurement

Observer, subject,
and instrument

All measurements and all
sources of variation

Use mean of two or more
BP measurements

For each measurement in the study, the investigator must decide how vigorously
to pursue each of these strategies. This decision can be based on the importance of the
variable, the magnitude of the potential problem with precision, and the feasibility and
cost of the strategy. In general, the first two strategies (standardizing and training)
should always be used, and the fifth (repetition) is an option that is guaranteed to
improve precision whenever it is feasible and affordable.

ACCURACY

The accuracy of a variable is the degree to which it actually represents what it
is intended to represent. This has an important influence on the validity of the
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TABLE 4.3 The Precision and Accuracy of Measurements

Precision Accuracy

Definition The degree to which a variable
has nearly the same value when
measured several times

The degree to which a variable
actually represents what it is
supposed to represent

Best way to assess Comparison among repeated
measures

Comparison with a reference
standard

Value to study Increase power to detect effects Increase validity of conclusions

Threatened by Random error (chance)
contributed by

Systematic error (bias)
contributed by

The observer The observer
The subject The subject
The instrument The instrument

study—the degree to which the observed findings lead to the correct inferences about
phenomena taking place in the study sample and in the universe.

Accuracy is different from precision in the ways shown in Table 4.3, and the
two are not necessarily linked. If serum cholesterol were measured repeatedly using
standards that had inadvertently been diluted twofold, for example, the result would
be inaccurate but could still be precise (consistently off by a factor of 2). This concept
is further illustrated in Figure. 4.2. Accuracy and precision do often go hand in hand
however, in the sense that many of the strategies for increasing precision will also
improve accuracy.

Accuracy is a function of systematic error (bias); the greater the error, the less
accurate the variable. The three main classes of measurement error noted in the earlier
section on precision each have counterparts here.

• Observer bias is a distortion, conscious or unconscious, in the perception or report-
ing of the measurement by the observer. It may represent systematic errors in the way
an instrument is operated, such as a tendency to round down blood pressure mea-
surements, or in the way an interview is carried out as in the use of leading questions.

• Instrument bias can result from faulty function of a mechanical instrument. A
scale that has not been calibrated recently may have drifted downward, producing
consistently low body weight readings.

Good precision
Poor accuracy

Poor precision
Good accuracy

Good precision
Good accuracy

Poor precision
Poor accuracy

FIGURE 4.2. The difference between precision and accuracy.
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• Subject bias is a distortion of the measurement by the study subject, for example,
in reporting an event (respondent or recall bias). Patients with breast cancer who
believe that alcohol is a cause of their cancer, for example, may exaggerate the
amount they used to drink.

The accuracy of a measurement is best assessed by comparing it, when possible,
to a ‘‘gold standard’’—a reference technique that is considered accurate. For
measurements on a continuous scale, the mean difference between the measurement
under investigation and the gold standard across study subjects can be determined.
For measurements on a dichotomous scale, accuracy in comparison to a gold standard
can be described in terms of sensitivity and specificity (Chapter 12). For measurements
on categorical scales with more than two response options, kappa can be used.

Validity
The degree to which a variable represents what is intended is difficult to assess when
measuring subjective and abstract phenomena, such as pain or quality of life, for
which there is no concrete gold standard. At issue is a particular type of accuracy
termed validity—how well the measurement represents the phenomenon of interest.
There are three ways to view and assess validity:

• Content validity examines how well the assessment represents all aspects of the
phenomena under study—for example, including questions on social, physical, emo-
tional, and intellectual functioning toassessqualityof life—andoften ituses subjective
judgments (face validity) about whether the measurements seem reasonable.

• Construct validity refers to how well a measurement conforms to theoretical
constructs; for example, if an attribute is theoretically believed to differ between
two groups a measure of this attribute that has construct validity would show this
difference.

• Criterion-related validity is the degree to which a new measurement correlates with
well-accepted existing measures. A powerful version of this approach is predictive
validity, the ability of the measurement to predict an outcome: the validity of a
measure of depression would be strengthened if it was found to predict suicide.

The general approach to validating an abstract measure is to begin by searching
the literature and consulting with experts in an effort to find a suitable instrument
(questionnaire) that has already been validated. Using such an instrument has the
advantage of making the results of the new study comparable to earlier work in
the area, and may simplify and strengthen the process of applying for grants and
publishing the results. Its disadvantage, however, is that an instrument taken off the
shelf may be outmoded or not appropriate for the research question.

If existing instruments are not suitable for the needs of the study, then the
investigator may decide to develop a new measurement approach and validate it
herself. This can be an interesting challenge that leads to a worthwhile contribution to
the literature, but it is fair to say that the process is often less scientific and conclusive
than the word ‘‘validation’’ connotes (Chapter 15).

Strategies for Enhancing Accuracy
The major approaches to increasing accuracy include the first four of the strategies
listed earlier for precision, and three additional ones (Table 4.4):

1. Standardizing the measurement methods
2. Training and certifying the observers
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TABLE 4.4 Strategies for Reducing Systematic Error in Order to Increase
Accuracy, with Illustrations from a Study of Antihypertensive
Treatment

Strategy to Reduce
Systematic Error

Source of
Systematic
Error

Example of
Systematic Error

Example of Strategy
to Prevent the Error

1. Standardizing the
measurement
methods in an
operations manual

Observer Consistently high diastolic blood
pressure (BP) readings due to
using the point at which sounds
become muffled

Specify the operational
definition of diastolic BP
as the point at which
sounds cease to be heard

Subject Consistently high readings due
to measuring BP right after
walking upstairs to clinic

Specify that subject sit in
quiet room for 5 minutes
before measurement

2. Training and
certifying the
observer

Observer Consistently high BP readings
due to failure to follow
procedures specified in
operations manual

Trainer checks accuracy
of observer’s reading
with a double-headed
stethoscope

3. Refining the
instrument

Instrument Consistently high BP readings
with standard cuff in subjects
with very large arms

Use extra-wide BP cuff in
obese patients

4. Automating the
instrument

Observer Conscious or unconscious
tendency for observer to read
BP lower in study group
randomized to active drug

Use automatic BP
measuring device

Subject BP increase due to proximity of
attractive technician

Use automatic BP
measuring device

5. Making
unobtrusive
measurements

Subject Tendency of subject to
overestimate compliance with
study drug

Measure study drug level
in urine

6. Calibrating the
instrument

Instrument Consistently high BP readings
due to manometer being out of
adjustment

Calibrate each month

7. Blinding Observer Conscious or unconscious
tendency for observer to read
BP lower in active treatment
group

Use double-blind
placebo to conceal study
group assignment

Subject Tendency of subject to
overreport side effects if she
knew she was on active drug

Use double-blind
placebo to conceal study
group assignment
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3. Refining the instruments
4. Automating the instruments
5. Making Unobtrusive Measurements. It is sometimes possible to design mea-

surements that the subjects are not aware of, thereby eliminating the possibility
that they will consciously bias the variable. A study of advice on healthy eating
patterns for schoolchildren, for example, could measure the number of candy bar
wrappers in the trash.

6. Calibrating the Instrument. The accuracy of many instruments, especially those
that are mechanical or electrical, can be increased by periodic calibration using a
gold standard.

7. Blinding. This classic strategy does not ensure the overall accuracy of the mea-
surements, but it can eliminate differential bias that affects one study group more
than another. In a double-blind clinical trial the subjects and observers do not
know whether active medicine or placebo has been assigned, and any inaccuracy
in measuring the outcome will be the same in the two groups.

The decision on how vigorously to pursue each of these seven strategies for each
measurement rests, as noted earlier for precision, on the judgment of the investigator.
The considerations are the magnitude of the potential impact that the anticipated
degree of inaccuracy will have on the conclusions of the study and the feasibility and
cost of the strategy. The first two strategies (standardizing and training) should always
be used, calibration is needed for any instrument that has the potential to change over
time, and blinding is essential whenever feasible.

OTHER FEATURES OF MEASUREMENT APPROACHES

Measurements should be sensitive enough to detect differences in a characteristic
that are important to the investigator. Just how much sensitivity is needed depends
on the research question. For example, a study of whether a new medication helps
people to quit smoking could use an outcome measure that is relatively insensitive
to the number of cigarettes smoked each day. On the other hand, if the question is
the effect of reducing the nicotine content of cigarettes on the number of cigarettes
smoked, the method should be sensitive to differences in daily habits of just a few
cigarettes.

An ideal measurement is specific, representing only the characteristic of in-
terest. The carbon monoxide level in expired air is a measure of smoking habits
that is only moderately specific because it can also be affected by other exposures
such as automobile exhaust. The overall specificity of assessing smoking habits can
be increased by supplementing the carbon monoxide data with other measure-
ments (such as self-report and serum cotinine level) that are not affected by air
pollution.

Measurements should be appropriate to the objectives of the study. A study of
stress as an antecedent to myocardial infarction, for example, would need to consider
which kind of stress (psychological or physical, acute or chronic) was of interest before
setting out the operational definitions for measuring it.

Measurements should provide an adequate distribution of responses in the
study population. A measure of functional status is most useful if it produces values
that range from high in some subjects to low in others. One of the main functions of
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pretesting is to ensure that the actual responses do not all cluster around one end of
the possible range of response (Chapter 17).

Finally, there is the issue of objectivity. This is achieved by reducing the involve-
ment of the observer and by increasing the structure of the instrument. The danger in
these strategies, however, is the consequent tunnel vision that limits the scope of the
observations and the ability to discover unanticipated phenomena. The best design is
often a compromise, including an opportunity for acquiring subjective and qualitative
data in addition to the main objective and quantitative measurements.

MEASUREMENTS ON STORED MATERIALS

Clinical research involves measurements on people that range across a broad array of
domains (Table 4.5). Some of these measurements can only be made during a contact
with the study subject, but many can be carried out later on biological specimens
banked for chemical or genetic analysis, or on images from radiographic and other
procedures filed electronically.

One advantage of such storage is the opportunity to reduce the cost of the
study by making measurements only on individuals who turn out during follow-up
to develop the condition of interest. A terrific approach to doing this is the nested
case–control design (Chapter 7); paired blinded measurements can be made in a
single analytic batch, eliminating the batch-to-batch component of random error. A
second advantage is that scientific advances may lead to new ideas and measurement
techniques that can be employed years after the study is completed.

The growing interest in translational research (Chapter 2) takes advantage of
new measurements that have greatly expanded clinical research in the areas of genetic
and molecular epidemiology (4,5). Measurements on specimens that contain DNA
(e.g., saliva, blood) can provide information on genotypes that contribute to the

TABLE 4.5 Common Types of Measurements that Can Be Made on Stored
Materials

Type of
Measurement Examples

Bank for
Later Measurement

Medical history Diagnoses, medications, operations,
symptoms, physical findings

Clinical charts

Psychosocial factors Depression, family history Voice recordings,
videotapes

Anthropometric Height, weight, body composition Photographs

Biochemical measures Serum cholesterol, plasma fibrinogen Serum, plasma, urine,
pathology specimens

Genetic/molecular tests Single neucleotide polymorphisms,
human leukocyte antigen type

DNA, immortal cell line

Imaging Bone density, coronary calcium X-rays, CT scans, MRI

Electromechanical Arrhythmia, congenital heart disease Electrocardiogram,
echocardiogram
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occurrence of disease or modify a patient’s response to treatment. Measurements
on serum can be used to study molecular causes or consequences of disease; for
example, proteomic patterns may provide useful information for diagnosing certain
diseases (6). It is important to consult with experts regarding the proper collection
tubes and storage conditions in order to preserve the quality of the specimens and
make them available for the widest spectrum of subsequent use.

IN CLOSING

Table 4.5 reviews the many kinds of measurements that can be included in a study.
Some of these are the topic of later chapters in this book. In Chapter 9 we will address
the issue of choosing measurements that will facilitate inferences about confounding
and causality. And in Chapter 15 we will address the topic of questionnaires and other
instruments for measuring information supplied by the study subject.

In designing measurements it is important to keep in mind the value of efficiency
and parsimony. The full set of measurements should collect useful data at an
affordable cost in time and money. Efficiency can be improved by increasing the
quality of each item and by reducing the number of items measured. Collecting more
data than are needed is a common error that can tire subjects, overwhelm the research
team, and clutter data management and analysis. The result may be a more expensive
study that paradoxically is less successful in answering the main research questions.

SUMMARY

1. Variables are either continuous (quantified on an infinite scale), discrete (quanti-
fied on a finite scale of integers), or categorical (classified in categories). Categorical
variables are further classified as nominal (unordered) or ordinal (ordered); those
that have only two categories are termed dichotomous.

2. Clinical investigators prefer variables that contain more information and
thereby provide greater power and/or smaller sample sizes: continuous variables
> discrete variables > ordered categorical variables > nominal and dichotomous
variables.

3. The precision of a measurement (i.e., the reproducibility of replicate measures)
is another major determinant of power and sample size. Precision is reduced by
random error (chance) from three sources of variability: the observer, the subject,
and the instrument.

4. Strategies for increasing precision that should be part of every study are to
operationally define and standardize methods in an operations manual, and
to train and certify observers. Other strategies that are often useful are refining
the instruments, automating the instruments, and using the mean of repeated
measurements.

5. The accuracy of a measurement (i.e., the degree to which it actually measures
the characteristic it is supposed to measure) is a major key to inferring correct
conclusions. Validity is a form of accuracy commonly used for abstract variables.
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Accuracy is reduced by systematic error (i.e., bias) from the same three sources:
the observer, the subject, and the instrument.

6. The strategies for increasing accuracy include all those listed for precision with
the exception of repetition. In addition, accuracy is enhanced by unobtrusive
measures, by calibration, and (in comparisons between groups) by blinding.

7. Individual measurements should be sensitive, specific, appropriate, and objec-
tive, and they should produce a range of values. In the aggregate, they should be
broad but parsimonious, serving the research question at moderate cost in time
and money.

8. Investigators should consider storing banks of materials for later measure-
ments that can take advantage of new technologies and the efficiency of nested
case–control designs.

APPENDIX 4.1

Operations Manual: Operational Definition of a
Measurement of Grip Strength

The operations manual describes the method for conducting and recording the results
of all the measurements made in the study. This example, from the operations manual
of the Study of Osteoporotic Fractures, describes the use of a dynamometer to
measure grip strength. To standardize instructions from examiner to examiner and
from subject to subject, the protocol includes a script of instructions to be read to the
participant verbatim.

Protocol for Measuring Grip Strength with the Dynamometer
Grip strength will be measured in both hands. The handle should be adjusted so that
the participant holds the dynamometer comfortably. Place the dynamometer in the
right hand with the dial facing the palm. The participant’s arm should be flexed 90◦

at the elbow with the forearm parallel to the floor.

1. Demonstrate the test to the subject. While demonstrating, use the following
description: ‘‘This device measures your arm and upper body strength. We will
measure your grip strength in both arms. I will demonstrate how it is done. Bend
your elbow at a 90◦ angle, with your forearm parallel to the floor. Don’t let your
arm touch the side of your body. Lower the device and squeeze as hard as you
can while I count to three. Once your arm is fully extended, you can loosen your
grip.’’

2. Allow one practice trial for each arm, starting with the right if she is right handed.
On the second trial, record the kilograms of force from the dial to the nearest
0.5 kg.

3. Reset the dial. Repeat the procedure for the other arm.

The arm should not contact the body. The gripping action should be a slow,
sustained squeeze rather than an explosive jerk.
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5 Getting Ready to Estimate

Sample Size: Hypotheses

and Underlying Principles

Warren S. Browner, Thomas B. Newman, and Stephen B. Hulley

After an investigator has decided whom and what she is going to study and the design
to be used, she must decide how many subjects to sample. Even the most rigorously
executed study may fail to answer its research question if the sample size is too
small. On the other hand, a study with too large a sample will be more difficult and
costly than necessary. The goal of sample size planning is to estimate an appropriate
number of subjects for a given study design.

Although a useful guide, sample size calculations give a deceptive impression of
statistical objectivity. They are only as accurate as the data and estimates on which
they are based, which are often just informed guesses. Sample size planning is a
mathematical way of making a ballpark estimate. It often reveals that the research
design is not feasible or that different predictor or outcome variables are needed.
Therefore, sample size should be estimated early in the design phase of a study, when
major changes are still possible.

Before setting out the specific approaches to calculating sample size for several
common research designs in Chapter 6, we will spend some time considering the un-
derlying principles. Readers who find some of these principles confusing will enjoy dis-
covering that sample size planning does not require their total mastery. However, just
as a recipe makes more sense if the cook is somewhat familiar with the ingredients, sam-
ple size calculations are easier if the investigator is acquainted with the basic concepts.

HYPOTHESES

The research hypothesis is a specific version of the research question that summa-
rizes the main elements of the study—the sample, and the predictor and outcome
variables—in a form that establishes the basis for tests of statistical significance.
Hypotheses are not needed in descriptive studies, which describe how characteristics
are distributed in a population, such as a study of the prevalence of a particular
genotype among patients with hip fractures. (That does not mean, however, that
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you won’t need to do a sample size estimate for a descriptive study, just that the
methods for doing so, described in Chapter 6, are different). Hypotheses are needed
for studies that will use tests of statistical significance to compare findings among
groups, such as a study of whether that particular genotype is more common among
patients with hip fractures than among controls. Because most observational studies
and all experiments address research questions that involve making comparisons, most
studies need to specify at least one hypothesis. If any of the following terms appear
in the research question, then the study is not simply descriptive, and a hypothesis
should be formulated: greater than, less than, causes, leads to, compared with, more
likely than, associated with, related to, similar to, correlated with.

Characteristics of a Good Hypothesis
A good hypothesis must be based on a good research question. It should also be
simple, specific, and stated in advance.

Simple versus Complex. A simple hypothesis contains one predictor and one out-
come variable:

A sedentary lifestyle is associated with an increased risk of proteinuria in patients
with diabetes

A complex hypothesis contains more than one predictor variable:

A sedentary lifestyle and alcohol consumption are associated with an increased risk
of proteinuria in patients with diabetes

Or more than one outcome variable:

Alcohol consumption is associated with an increased risk of proteinuria and of
neuropathy in patients with diabetes

Complex hypotheses like these are not readily tested with a single statistical test and
are more easily approached as two or more simple hypotheses. Sometimes, however,
a combined predictor or outcome variable can be used:

Alcohol consumption is associated with an increased risk of developing a microvas-
cular complication of diabetes (i.e., proteinuria, neuropathy, or retinopathy) in
patients with diabetes.

In this example the investigator has decided that what matters is whether a participant
has a complication, not what type of complication occurs.

Specific versus Vague. A specific hypothesis leaves no ambiguity about the subjects
and variables or about how the test of statistical significance will be applied. It uses
concise operational definitions that summarize the nature and source of the subjects
and how variables will be measured.

Use of tricyclic antidepressant medications, assessed with pharmacy records, is
more common in patients hospitalized with an admission diagnosis of myocardial
infarction at Longview Hospital in the past year than in controls hospitalized for
pneumonia.
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This is a long sentence, but it communicates the nature of the study in a clear way
that minimizes any opportunity for testing something a little different once the study
findings have been examined. It would be incorrect to substitute, during the analysis
phase of the study, a different measurement of the predictor, such as the self-reported
use of pills for depression, without considering the issue of multiple hypothesis testing
(a topic we discuss at the end of the chapter). Usually, to keep the research hypothesis
concise, some of these details are made explicit in the study plan rather than being
stated in the research hypothesis. But they should always be clear in the investigator’s
conception of the study, and spelled out in the protocol.

It is often obvious from the research hypothesis whether the predictor variable
and the outcome variable are dichotomous, continuous, or categorical. If it is not
clear, then the type of variables can be specified:

Alcohol consumption (in mg/day) is associated with an increased risk of proteinuria
(>300 mg/day) in patients with diabetes.

If the research hypothesis begins to get too cumbersome, the definitions can be left
out, as long as they are clarified elsewhere in the protocol.

In-Advance versus After-the-Fact. The hypothesis should be stated in writing at
the outset of the study. Most important, this will keep the research effort focused
on the primary objective. A single prestated hypothesis also creates a stronger basis
for interpreting the study results than several hypotheses that emerge as a result of
inspecting the data. Hypotheses that are formulated after examination of the data are
a form of multiple hypothesis testing that can lead to overinterpreting the importance
of the findings.

Types of Hypotheses
For the purpose of testing statistical significance, the research hypothesis must be
restated in forms that categorize the expected difference between the study groups.

• Null and alternative hypotheses. The null hypothesis states that there is no
association between the predictor and outcome variables in the population (there
is no difference in the frequency of drinking well water between subjects who develop
peptic ulcer disease and those who do not). The null hypothesis is the formal basis
for testing statistical significance. Assuming that there really is no association in
the population, statistical tests help to estimate the probability that an association
observed in a study is due to chance.

• The proposition that there is an association (the frequency of drinking well water is
different in subjects who develop peptic ulcer disease than in those who do not) is called
the alternative hypothesis. The alternative hypothesis cannot be tested directly; it
is accepted by default if the test of statistical significance rejects the null hypothesis
(see later).

• One- and two-sided alternative hypotheses. A one-sided hypothesis specifies the
direction of the association between the predictor and outcome variables. The
hypothesis that drinking well water is more common among subjects who develop
peptic ulcers is a one-sided hypothesis. A two-sided hypothesis states only that an
association exists; it does not specify the direction. The hypothesis that subjects
who develop peptic ulcer disease have a different frequency of drinking well water
than those who do not is a two-sided hypothesis.
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One-sided hypotheses may be appropriate in selected circumstances, such as
when only one direction for an association is clinically important or biologically
meaningful. An example is the one-sided hypothesis that a new drug for hypertension
is more likely to cause rashes than a placebo; the possibility that the drug causes
fewer rashes than the placebo is not usually worth testing (it might be if the drug had
anti-inflammatory properties!). A one-sided hypothesis may also be appropriate when
there is very strong evidence from prior studies that an association is unlikely to occur
in one of the two directions, such as a study that tested whether cigarette smoking
affects the risk of brain cancer. Because smoking has been associated with an increased
risk of many different types of cancers, a one-sided alternative hypothesis (e.g., that
smoking increases the risk of brain cancer) might suffice. However, investigators should
be aware that many well-supported hypotheses (e.g., that β-carotene therapy will
reduce the risk of lung cancer, or that treatment with drugs that reduce the number
of ventricular ectopic beats will reduce sudden death among patients with ventricular
arrhythmias) turn out to be wrong when tested in randomized trials. Indeed, in these
two examples, the results of well-done trials revealed a statistically significant effect
that was opposite in direction from the one supported by previous data (1–3). Overall,
we believe that nearly all alternative hypotheses deserve to be two-sided.

It is important to keep in mind the difference between a research hypothesis,
which is often one-sided, and the alternative hypothesis that is used when planning
sample size, which is almost always two-sided. For example, suppose the research
hypothesis is that recurrent use of antibiotics during childhood is associated with an
increased risk of inflammatory bowel disease. That hypothesis specifies the direction
of the anticipated effect, so it is one-sided. Why use a two-sided alternative hypothesis
when planning the sample size? The answer is that most of the time, both sides
of the alternative hypothesis (i.e., greater risk or lesser risk) are interesting, and
the investigators would want to publish the results no matter which direction was
observed. Statistical rigor requires the investigator choose between one- and two-sided
hypotheses before analyzing the data; switching to a one-sided alternative hypothesis
to reduce the P value (see below) is not correct. In addition (and this is probably
the real reason that two-sided alternative hypotheses are much more common), most
grant and manuscript reviewers expect two-sided hypotheses, and are critical of a
one-sided approach.

UNDERLYING STATISTICAL PRINCIPLES

A hypothesis, such as that 15 minutes or more of exercise per day is associated with a
lower mean fasting blood glucose level in middle-aged women with diabetes, is either true
or false in the real world. Because an investigator cannot study all middle-aged women
with diabetes, she must test the hypothesis in a sample of that target population. As
noted in Figure 1.6, there will always be a need to draw inferences about phenomena
in the population from events observed in the sample.

In some ways, the investigator’s problem is similar to that faced by a jury judging
a defendant (Table 5.1). The absolute truth about whether the defendant committed
the crime cannot usually be determined. Instead, the jury begins by presuming
innocence: the defendant did not commit the crime. The jury must decide whether
there is sufficient evidence to reject the presumed innocence of the defendant; the
standard is known as beyond a reasonable doubt. A jury can err, however, by
convicting an innocent defendant or by failing to convict a guilty one.
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TABLE 5.1 The Analogy between Jury Decisions and Statistical Tests

Jury Decision Statistical Test

Innocence: The defendant did not
counterfeit money.

Null hypothesis: There is no association between dietary
carotene and the incidence of colon cancer in the
population.

Guilt: The defendant did counterfeit
money.

Alternative hypothesis: There is an association between
dietary carotene and the incidence of colon cancer.

Standard for rejecting innocence:
Beyond a reasonable doubt.

Standard for rejecting null hypothesis: Level of
statistical significance (α).

Correct judgment: Convict a
counterfeiter.

Correct inference: Conclude that there is an association
between dietary carotene and colon cancer when one
does exist in the population.

Correct judgment: Acquit an
innocent person.

Correct inference: Conclude that there is no association
between carotene and colon cancer when one does not
exist.

Incorrect judgment: Convict an
innocent person.

Incorrect inference (type I error): Conclude that there is
an association between dietary carotene and colon
cancer when there actually is none.

Incorrect judgment: Acquit a
counterfeiter.

Incorrect inference (type II error): Conclude that there is
no association between dietary carotene and colon
cancer when there actually is one.

In similar fashion, the investigator starts by presuming the null hypothesis of no
association between the predictor and outcome variables in the population. Based on
the data collected in her sample, the investigator uses statistical tests to determine
whether there is sufficient evidence to reject the null hypothesis in favor of the
alternative hypothesis that there is an association in the population. The standard for
these tests is known as the level of statistical significance.

Type I and Type II Errors
Like a jury, an investigator may reach a wrong conclusion. Sometimes by chance
alone a sample is not representative of the population and the results in the sample
do not reflect reality in the population, leading to an erroneous inference. A type I
error (false-positive) occurs if an investigator rejects a null hypothesis that is actually
true in the population; a type II error (false-negative) occurs if the investigator fails
to reject a null hypothesis that is actually not true in the population. Although type
I and type II errors can never be avoided entirely, the investigator can reduce their
likelihood by increasing the sample size (the larger the sample, the less likely that it
will differ substantially from the population) or by manipulating the design or the
measurements in other ways that we will discuss.

In this chapter and the next, we deal only with ways to reduce type I and type II
errors due to chance variation, also known as random error. False-positive and false-
negative results can also occur because of bias, but errors due to bias are not usually
referred to as type I and II errors. Such errors are especially troublesome, because they
may be difficult to detect and cannot usually be quantified using statistical methods
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or avoided by increasing the sample size. (See Chapters 1, 3, 4, and 7 through 12 for
ways to reduce errors due to bias.)

Effect Size
The likelihood that a study will be able to detect an association between a predictor and
an outcome variable in a sample depends on the actual magnitude of that association
in the population. If it is large (mean fasting blood glucose levels are 20 mg/dL lower in
diabetic women who exercise than in those who do not), it will be easy to detect in the
sample. Conversely, if the size of the association is small (a difference of 2 mg/dL), it
will be difficult to detect in the sample.

Unfortunately, the investigator does not usually know the exact size of the
association; one of the purposes of the study is to estimate it! Instead, the investigator
must choose the size of the association that she expects to be present in the sample.
That quantity is known as the effect size. Selecting an appropriate effect size is the
most difficult aspect of sample size planning (4). The investigator should first try
to find data from prior studies in related areas to make an informed guess about a
reasonable effect size. When data are not available, it may be necessary to do a small
pilot study. Alternatively, she can choose the smallest effect size that in her opinion
would be clinically meaningful (a 10 mg/dL reduction in the fasting glucose level).

Of course, from the public health point of view, even a reduction of 2 or 3 mg/dL
in fasting glucose levels might be important, especially if it was easy to achieve. The
choice of the effect size is always arbitrary, and considerations of feasibility are often
paramount. Indeed, when the number of available or affordable subjects is limited,
the investigator may have to work backward (Chapter 6) to determine the effect size
that her study will be able to detect.

There are many different ways to measure the size of an association, especially
when the outcome variable is dichotomous. For example, consider a study of whether
middle-aged men are more likely to have impaired hearing than middle-aged women.
Suppose an investigator finds that 20% of women and 30% of men 50 to 65 years
of age are hard of hearing. These results could be interpreted as showing that men
are 10% more likely to have impaired hearing than women (30% − 20%, the absolute
difference), or 50% more likely ([30% − 20%] ÷ 20%, the relative difference). For
sample size planning, both of the proportions matter; the sample size tables in this
book use the smaller proportion (in this case, 20%) and the absolute difference (10%)
between the groups being compared.

Many studies measure several effect sizes, because they measure several different
predictor and outcome variables. For sample size planning, the sample size using the
desired effect size for the most important hypothesis should be determined; the effect
sizes for the other hypotheses can then be estimated. If there are several hypotheses of
similar importance, then the sample size for the study should be based on whichever
hypothesis needs the largest sample.

α, β, and Power
After a study is completed, the investigator uses statistical tests to try to reject the
null hypothesis in favor of its alternative, in much the same way that a prosecuting
attorney tries to convince a jury to reject innocence in favor of guilt. Depending on
whether the null hypothesis is true or false in the target population, and assuming
that the study is free of bias, four situations are possible (Table 5.2). In two of these,
the findings in the sample and reality in the population are concordant, and the
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TABLE 5.2 Truth in the Population versus the Results in the Study Sample: The
Four Possibilities

Truth in the Population

Results in the Study Sample
Association Between
Predictor and Outcome

No Association Between
Predictor and Outcome

Reject null hypothesis Correct Type I error

Fail to reject null hypothesis Type II error Correct

investigator’s inference will be correct. In the other two situations, either a type I or
type II error has been made, and the inference will be incorrect.

The investigator establishes the maximum chance that she will tolerate of making
type I and II errors in advance of the study. The probability of committing a type
I error (rejecting the null hypothesis when it is actually true) is called α (alpha).
Another name for α is the level of statistical significance.

If, for example, a study of the effects of exercise on fasting blood glucose levels is
designed with an α of 0.05, then the investigator has set 5% as the maximum chance
of incorrectly rejecting the null hypothesis if it is true (and inferring that exercise
and fasting blood glucose levels are associated in the population when, in fact, they
are not). This is the level of reasonable doubt that the investigator will be willing to
accept when she uses statistical tests to analyze the data after the study is completed.

The probability of making a type II error (failing to reject the null hypothesis
when it is actually false) is called β (beta). The quantity [1 − β] is called power, the
probability of correctly rejecting the null hypothesis in the sample if the actual effect
in the population is equal to (or greater than) the effect size.

If β is set at 0.10, then the investigator has decided that she is willing to accept a
10% chance of missing an association of a given effect size if it exists. This represents a
power of 0.90; that is, a 90% chance of finding an association of that size or greater. For
example, suppose that exercise really would lead to an average reduction of 20 mg/dL
in fasting glucose levels among diabetic women in the entire population. Suppose
that the investigator drew a sample of women from the population on numerous
occasions, each time carrying out the same study (with the same measurements and
the same 90% power each time). Then in nine of every ten studies the investigator
would correctly reject the null hypothesis and conclude that exercise is associated
with fasting glucose level. This does not mean, however, that the investigator doing a
single study will be unable to detect it if the effect actually present in the population
was smaller, say, a 15 mg/dL reduction; it means simply that she will have less than a
90% likelihood of doing so.

Ideally, α and β would be set at zero, eliminating the possibility of false-positive
and false-negative results. In practice they are made as small as possible. Reducing
them, however, requires increasing the sample size; other strategies are discussed in
Chapter 6. Sample size planning aims at choosing a sufficient number of subjects
to keep α and β at an acceptably low level without making the study unnecessarily
expensive or difficult.

Many studies set α at 0.05 and β at 0.20 (a power of 0.80). These are arbitrary
values, and others are sometimes used: the conventional range for α is between 0.01
and 0.10, and that for β is between 0.05 and 0.20. In general, the investigator should
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use a low α when the research question makes it particularly important to avoid a type
I (false-positive) error—for example, in testing the efficacy of a potentially dangerous
medication. She should use a low β (and a small effect size) when it is especially
important to avoid a type II (false-negative) error—for example, in reassuring the
public that living near a toxic waste dump is safe.

P Value
The null hypothesis acts like a straw man: it is assumed to be true so that it can be
knocked down as false with a statistical test. When the data are analyzed, such tests
determine the P value, the probability of seeing an effect as big as or bigger than that
in the study by chance if the null hypothesis actually were true. The null hypothesis is
rejected in favor of its alternative if the P value is less than α, the predetermined level
of statistical significance.

A ‘‘nonsignificant’’ result (i.e., one with a P value greater than α) does not mean
that there is no association in the population; it only means that the result observed
in the sample is small compared with what could have occurred by chance alone. For
example, an investigator might find that men with hypertension were twice as likely to
develop prostate cancer as those with normal blood pressure, but because the number
of cancers in the study was modest this apparent effect had a P value of only 0.08.
This means that even if hypertension and prostatic carcinoma were not associated
in the population, there would be an 8% chance of finding such an association due
to random error in the sample. If the investigator had set the significance level as a
two-sided α of 0.05, she would have to conclude that the association in the sample
was ‘‘not statistically significant.’’ It might be tempting for the investigator to change
her mind about the level of statistical significance, reset the two-sided α to 0.10,
and report, ‘‘The results showed a statistically significant association (P < 0.10),’’ or
switch to a one-sided P value and report it as ‘‘P = 0.04.’’ A better choice would
be to report that ‘‘The results, although suggestive of an association, did not achieve
statistical significance (P = 0.08).’’

This solution acknowledges that statistical significance is not an all-or-none
situation. In part because of this problem, many statisticians and epidemiologists
are moving away from hypothesis testing, with its emphasis on P values, to using
confidence intervals to report the precision of the study results (5–7). However, for
the purposes of sample size planning for analytic studies, hypothesis testing is still the
standard.

Sides of the Alternative Hypothesis
Recall that an alternative hypothesis actually has two sides, either or both of which
can be tested in the sample by using one- or two-sided statistical tests. When a
two-sided statistical test is used, the P value includes the probabilities of committing
a type I error in each of two directions, which is about twice as great as the probability
in either direction alone. It is easy to convert from a one-sided P value to a two-sided
P value, and vice versa. A one-sided P value of 0.05, for example, is usually the same
as a two-sided P value of 0.10. (Some statistical tests are asymmetric, which is why
we said ‘‘usually.’’)

In those rare situations in which an investigator is only interested in one of
the sides and has so formulated the alternative hypothesis, sample size should be
calculated accordingly. A one-sided hypothesis should never be used just to reduce
the sample size.
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Type of Statistical Test
The formulas used to calculate sample size are based on mathematical assumptions,
which differ for each statistical test. Before the sample size can be calculated, the
investigator must decide on the statistical approach to analyzing the data. That choice
depends mainly on the type of predictor and outcome variables in the study. Table 6.1
lists some common statistics used in data analysis, and Chapter 6 provides simplified
approaches to estimating sample size for studies that use these statistics.

ADDITIONAL POINTS

Variability
It is not simply the size of an effect that is important; its variability also matters.
Statistical tests depend on being able to show a difference between the groups being
compared. The greater the variability (or spread) in the outcome variable among
the subjects, the more likely it is that the values in the groups will overlap, and the
more difficult it will be to demonstrate an overall difference between them. Because
measurement error contributes to the overall variability, less precise measurements
require larger sample sizes (8).

Consider a study of the effects of two isocaloric diets (low fat and low carbohy-
drate) in achieving weight loss in 20 obese patients. If all those on the low-fat diet
lost about 3 kg and all those on the low-carbohydrate diet failed to lose much weight
(an effect size of 3 kg), it is likely that the low-fat diet really is better (Fig. 5.1A).
On the other hand, suppose that although the average weight loss is 3 kg in the
low-fat group and 0 kg in the low-carbohydrate group, there is a great deal of overlap
between the two groups. (The changes in weight vary from a loss of 8 kg to a gain of
8 kg.) In this situation (Fig. 5.1B), although the effect size is still 3 kg, the greater
variability will make it more difficult to detect a difference between the diets, and a
larger sample size will be needed.

When one of the variables used in the sample size estimate is continuous (e.g.,
body weight in Figure 5.1), the investigator will need to estimate its variability. (See
the section on the t test in Chapter 6 for details.) In the other situations, variability
is already included in the other parameters entered into the sample size formulas and
tables, and need not be specified.

Multiple and Post Hoc Hypotheses
When more than one hypothesis is tested in a study, especially if some of those
hypotheses were formulated after the data were analyzed (post hoc hypotheses), the
likelihood that at least one will achieve statistical significance on the basis of chance
alone increases. For example, if 20 independent hypotheses are tested at an α of 0.05,
the likelihood is substantial (64%; [1 − 0.9520]) that at least one hypothesis will be
statistically significant by chance alone. Some statisticians advocate adjusting the level
of statistical significance when more than one hypothesis is tested in a study. This
keeps the overall probability of accepting any one of the alternative hypotheses, when
all the findings are due to chance, at the specified level. For example, genomic studies
that look for an association between hundreds (or even thousands) of genotypes and
a disease need to use a much smaller α than 0.05, or they risk identifying many
false-positive associations.

One approach, named after the mathematician Bonferroni, is to divide the
significance level (say, 0.05) by the number of hypotheses tested. If there were four
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FIGURE 5.1. A: Weight loss achieved by two diets. All subjects on the low-fat
diet lost from 2 to 4 kg, whereas weight change in those on the low-
carbohydrate (CHO) diet varied from −1 to +1 kg. Because there is no
overlap between the two groups, it is reasonable to infer that the low-fat diet
is better at achieving weight loss than the low-carbohydrate diet (as would be
confirmed with a t test, which has a P value < 0.0001). B: Weight loss
achieved by two diets. There is substantial overlap in weight change in the two
groups. Although the effect size is the same (3 kg) as in A, there is little
evidence that one diet is better than the other (as would be confirmed with a t
test, which has a P value of 0.19).

hypotheses, for example, each would be tested at an α of 0.0125 (i.e., 0.05 ÷ 4). This
would require substantially increasing the sample size over that needed for testing
each hypothesis at an α of 0.05.

We believe that a Bonferroni-type of approach to multiple hypothesis testing is
usually too stringent. Investigators do not adjust the significance levels for hypotheses
that are tested in separate studies. Why do so when several hypotheses are tested in
the same study? In our view, adjusting α for multiple hypotheses is chiefly useful
when the likelihood of making false-positive errors is high, because the number of
tested hypotheses is substantial (say, more than ten) and the prior probability for each
hypothesis is low (e.g., in screening a large number of genes for association with a
phenotype). The first criterion is actually stricter than it may appear, because what
matters is the number of hypotheses that are tested, not the number that are reported.
Testing 50 hypotheses but only reporting or emphasizing the one or two P values
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that are less than 0.05 is misleading. Adjusting α for multiple hypotheses is especially
important when the consequences of making a false-positive error are large, such as
mistakenly concluding that an ineffective treatment is beneficial.

In general, the issue of what significance level to use depends more on the prior
probability of each hypothesis than on the number of hypotheses tested. There is an
analogy with the use of diagnostic tests that may be helpful (9). When interpreting
the results of a diagnostic test, a clinician considers the likelihood that the patient
being tested has the disease in question. For example, a modestly abnormal test result
in a healthy person (a serum alkaline phosphatase level that is 15% greater than the
upper limit of normal) is probably a false-positive test that is unlikely to have much
clinical importance. Similarly, a P value of 0.05 for an unlikely hypothesis is probably
also a false-positive result.

However, an alkaline phosphatase level that is 10 or 20 times greater than the
upper limit of normal is unlikely to have occurred by chance (although it might be
a laboratory error). So too a very small P value (say, <0.001) is unlikely to have
occurred by chance (although it could be due to bias). It is hard to dismiss very
abnormal test results as being false-positives or to dismiss very low P values as being
due to chance, even if the prior probability of the disease or the hypothesis was low.

Moreover, the number of tests that were ordered, or hypotheses that were tested,
is not always relevant. The interpretation of an elevated serum uric acid level in a
patient with a painful and swollen joint should not depend on whether the physician
ordered just a single test (the uric acid level) or obtained the result as part of a panel of
20 tests. Similarly, when interpreting the P value for testing a research hypothesis that
makes good sense, it should not matter that the investigator also tested several unlikely
hypotheses. What matters most is the reasonableness of the research hypothesis being
tested: that it has a substantial prior probability of being correct. (Prior probability, in
this ‘‘Bayesian’’ approach, is usually a subjective judgment based on evidence from
other sources.) Hypotheses that are formulated during the design of a study usually
meet this requirement; after all, why else would the investigator put the time and
effort into planning and doing the study?

What about unanticipated associations that appear during the collection and
analysis of a study’s results? This process is sometimes called hypothesis generation
or, less favorably, ‘‘data-mining’’ or a ‘‘fishing expedition.’’ The many informal
comparisons that are made during data analysis are a form of multiple hypothesis
testing. A similar problem arises when variables are redefined during data analysis,
or when results are presented for subgroups of the sample. Significant P values for
data-generated hypotheses that were not considered during the design of the study
are often due to chance. They should be viewed with interest but skepticism and
considered a fertile source of potential research questions for future studies.

Sometimes, however, an investigator fails to specify a particular hypothesis in
advance, although that hypothesis seems reasonable when it is time for the data to be
analyzed. This might happen, for example, if others discover a new risk factor while
the study is going on, or if the investigator just didn’t happen to think of a particular
hypothesis when the study was being designed. The important issue is not so much
whether the hypothesis was formulated before the study began, but whether there is a
reasonable prior probability based on evidence from other sources that the hypothesis
is true (9).

There are some definite advantages to formulating more than one hypothesis
when planning a study. The use of multiple unrelated hypotheses increases the
efficiency of the study, making it possible to answer more questions with a single
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research effort and to discover more of the true associations that exist in the population.
It may also be a good idea to formulate several related hypotheses; if the findings
are consistent, the study conclusions are made stronger. Studies in patients with
heart failure have found that the use of angiotensin-converting enzyme inhibitors is
beneficial in reducing cardiac admissions, cardiovascular mortality, and total mortality.
Had only one of these hypotheses been tested, the inferences from these studies would
have been less definitive. Lunch may not be free, however, when multiple hypotheses
are tested. Suppose that when these related and prestated hypotheses are tested, only
one turns out to be statistically significant. Then the investigator must decide (and
try to convince editors and readers) whether the significant results, the nonsignificant
results, or both sets of results are true.

Primary and Secondary Hypotheses
Some studies, especially large randomized trials, specify some hypotheses as being
‘‘secondary.’’ This usually happens when there is one primary hypothesis around
which the study has been designed, but the investigators are also interested in other
research questions that are of lesser importance. For example, the primary outcome
of a trial of zinc supplementation might be hospitalizations or emergency department
visits for upper respiratory tract infections; a secondary outcome might be self-reported
days missed from work or school. If the study is being done to obtain approval for a
pharmaceutical agent, the primary outcome is what will matter most to the regulatory
body. The sample size calculations are always focused on the primary hypothesis, and
secondary hypotheses with insufficient power should be avoided. Stating a secondary
hypothesis in advance does increase the credibility of the results. Stating a secondary
hypothesis after the data have been collected and analyzed is another form of data
dredging.

A good rule, particularly for clinical trials, is to establish in advance as many
hypotheses as make sense, but specify just one as the primary hypothesis, which
can be tested statistically without argument about whether to adjust for multiple
hypothesis testing. More important, having a primary hypothesis helps to focus the
study on its main objective and provides a clear basis for the main sample size
calculation.

SUMMARY

1. Sample size planning is an important part of the design of both analytic and
descriptive studies. The sample size should be estimated early in the process of
developing the research design, so that appropriate modifications can be made.

2. Analytic studies and experiments need a hypothesis that specifies, for the purpose
of subsequent statistical tests, the anticipated association between the main
predictor and outcome variables. Purely descriptive studies, lacking the strategy of
comparison, do not require a hypothesis.

3. Good hypotheses are specific about how the population will be sampled and the
variables measured, simple (there is only one predictor and one outcome variable),
and formulated in advance.

4. The null hypothesis, which proposes that the predictor and outcome variables
are not associated, is the basis for tests of statistical significance. The alternative
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hypothesis proposes that they are associated. Statistical tests attempt to reject the
null hypothesis of no association in favor of the alternative hypothesis that there is
an association.

5. An alternative hypothesis is either one-sided (only one direction of association will
be tested) or two-sided (both directions will be tested). One-sided hypotheses
should only be used in unusual circumstances, when only one direction of the
association is clinically or biologically meaningful.

6. For analytic studies and experiments, the sample size is an estimate of the number
of subjects required to detect an association of a given effect size and variability at
a specified likelihood of making type I (false-positive) and type II (false-negative)
errors. The maximum likelihood of making a type I error is called α; that of
making a type II error, β. The quantity (1 − β) is power, the chance of observing
an association of a given effect size or greater in a sample if one is actually present
in the population.

7. It is often desirable to establish more than one hypothesis in advance, but the
investigator should specify a single primary hypothesis as a focus and for sample
size estimation. Interpretation of findings from testing multiple hypotheses in
the sample, including unanticipated findings that emerge from the data, is based
on a judgment about the prior probability that they represent real phenomena in
the population.
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6 Estimating Sample Size

and Power: Applications

and Examples

Warren S. Browner, Thomas B. Newman, and Stephen B. Hulley

Chapter 5 introduced the basic principles underlying sample size calculations. This
chapter presents several cookbook techniques for using those principles to esti-
mate the sample size needed for a research project. The first section deals with
sample size estimates for an analytic study or experiment, including some special
issues that apply to these studies such as multivariate analysis. The second section
considers studies that are primarily descriptive. Subsequent sections deal with stud-
ies that have a fixed sample size, strategies for maximizing the power of a study,
and how to estimate the sample size when there appears to be insufficient in-
formation from which to work. The chapter concludes with common errors to
avoid.

At the end of the chapter, there are tables and formulas in the appendixes for
several basic methods of estimating sample size. In addition, there is a calculator on
our website (www.epibiostat.ucsf.edu/dcr/), and there are many sites on the Web
that can provide instant interactive sample size calculations; try searching for ‘‘sample
size’’ and ‘‘power’’ and ‘‘interactive’’. Most statistical packages can also estimate
sample size for common study designs.

SAMPLE SIZE TECHNIQUES FOR ANALYTIC STUDIES
AND EXPERIMENTS

There are several variations on the recipe for estimating sample size in an analytic
study or experiment, but they all have certain steps in common:

1. State the null hypothesis and either a one- or two-sided alternative hypothesis.
2. Select the appropriate statistical test from Table 6.1 based on the type of predictor

variable and outcome variable in those hypotheses.
3. Choose a reasonable effect size (and variability, if necessary).
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TABLE 6.1 Simple Statistical Tests for Use in Estimating
Sample Size∗

Outcome Variable

Predictor Variable Dichotomous Continuous

Dichotomous Chi-squared test† t test

Continuous t test Correlation coefficient

∗ See text for what to do about ordinal variables, or if planning to analyze the data with
another type of statistical test.
† The chi-squared test is always two-sided; a one-sided equivalent is the Z statistic.

4. Set α and β. (Specify a two-sided α unless the alternative hypothesis is clearly
one-sided.)

5. Use the appropriate table or formula in the appendix to estimate the sample size.

Even if the exact value for one or more of the ingredients is uncertain, it is
important to estimate the sample size early in the design phase. Waiting until the last
minute to prepare the sample size can be a rude awakening: it may be necessary to
start over with new ingredients, which may mean redesigning the entire study. This is
why this subject is covered early in this book.

Not all analytic studies fit neatly into one of the three main categories that follow;
a few of the more common exceptions are discussed in the section called ‘‘Other
Considerations and Special Issues.’’

The t Test
The t test (sometimes called ‘‘Student’s t test,’’ after the pseudonym of its developer)
is commonly used to determine whether the mean value of a continuous outcome
variable in one group differs significantly from that in another group. For example,
the t test would be appropriate to use when comparing the mean depression scores
in patients treated with two different antidepressants, or the mean change in weight
among two groups of participants in a placebo-controlled trial of a new drug
for weight loss. The t test assumes that the distribution (spread) of the variable
in each of the two groups approximates a normal (bell-shaped) curve. However,
the t test is remarkably robust, so it can be used for almost any distribution
unless the number of subjects is small (fewer than 30 to 40) or there are extreme
outliers.

To estimate the sample size for a study that will be analyzed with a t test (see
Example 6.1), the investigator must

1. State the null hypothesis and whether the alternative hypothesis is one- or two-
sided.

2. Estimate the effect size (E) as the difference in the mean value of the outcome
variable between the study groups.

3. Estimate the variability of the outcome variable as its standard deviation (S).
4. Calculate the standardized effect size (E/S), defined as the effect size divided by

the standard deviation of the outcome variable.
5. Set α and β.
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The effect size and variability can often be estimated from previous studies in
the literature and consultation with experts. Occasionally, a small pilot study will be
necessary to estimate the standard deviation of the outcome variable (also see the
Section ‘‘How to estimate sample size when there is insufficient information,’’ later in
this chapter). When the outcome variable is the change in a continuous measurement
(e.g., change in weight during a study), the investigator should use the standard
deviation of the change in that variable (not the standard deviation of the variable
itself) in the sample size estimates. The standard deviation of the change in a variable
is usually smaller than the standard deviation of the variable; therefore the sample size
will also be smaller.

The standardized effect size is a unitless quantity that makes it possible to
estimate a sample size when an investigator cannot obtain information about the
variability of the outcome variable; it also simplifies comparisons between the effect
sizes of different variables. (The standardized effect size equals the effect size divided
by the standard deviation of the outcome variable. For example, a 10 mg/dL
difference in serum cholesterol level, which has a standard deviation in the population
of about 40 mg/dL, would equal a standardized effect size of 0.25.) The larger the
standardized effect size, the smaller the required sample size. For most studies, the
standardized effect size will be >0.1. Effect sizes smaller than that are difficult to
detect (they require very large sample sizes) and usually not very important clinically.

Appendix 6A gives the sample size requirements for various combinations of α

and β for several standardized effect sizes. To use Table 6A, look down its leftmost
column for the standardized effect size. Next, read across the table to the chosen
values for α and β for the sample size required per group. (The numbers in Table 6A
assume that the two groups being compared are of the same size; use the formula
below the table or an interactive Web-based program if that assumption is not true.)

Example 6.1 Calculating Sample Size When Using the t Test

Problem: The research question is whether there is a difference in the efficacy of
salbutamol and ipratropium bromide for the treatment of asthma. The investigator
plans a randomized trial of the effect of these drugs on FEV1 (forced expiratory
volume in 1 second) after 2 weeks of treatment. A previous study has reported that
the mean FEV1 in persons with treated asthma was 2.0 liters, with a standard
deviation of 1.0 liter. The investigator would like to be able to detect a difference of
10% or more in mean FEV1 between the two treatment groups. How many patients
are required in each group (salbutamol and ipratropium) at α (two-sided) = 0.05
and power = 0.80?

Solution: The ingredients for the sample size calculation are as follows:

1. Null Hypothesis: Mean FEV1 after 2 weeks of treatment is the same in asthmatic
patients treated with salbutamol as in those treated with ipratropium.
Alternative Hypothesis (two-sided): Mean FEV1 after 2 weeks of treatment is
different in asthmatic patients treated with salbutamol from what it is in those
treated with ipratropium.

2. Effect Size = 0.2 liters (10% × 2.0 liters).
3. Standard Deviation of FEV1 = 1.0 liter.
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4. Standardized Effect Size = effect size ÷ standard deviation = 0.2 liters ÷ 1.0
liter = 0.2.

5. α(two-sided) = 0.05; β = 1 - 0.80 = 0.20. (Recall that β = 1 − power.)

Looking across from a standardized effect size of 0.20 in the leftmost column
of Table 6A and down from α(two-sided) = 0.05 and β = 0.20, 394 patients are
required per group. This is the number of patients in each group who need to complete
the study; even more will need to be enrolled to account for dropouts. This sample
size may not be feasible, and the investigator might reconsider the study design, or
perhaps settle for only being able to detect a larger effect size. See the section on the t
test for paired samples (‘‘Example 6.8’’) for a great solution.

The t test is usually used for comparing continuous outcomes, but it can also be
used to estimate the sample size for a dichotomous outcome (e.g., in a case–control
study) if the study has a continuous predictor variable. In this situation, the t test
compares the mean value of the predictor variable in the cases with that in the controls.

There is a convenient shortcut for approximating sample size using the t test,
when more than about 30 subjects will be studied and the power is set at 0.80
(β = 0.2) and α (two-sided) is set at 0.05 (1). The formula is

Sample size (per equal-sized group) = 16 ÷ (standardized effect size)2.

For Example 6.1, the shortcut estimate of the sample size would be 16 ÷ 0.22 = 400
per group.

The Chi-Squared Test
The chi-squared test (χ2) can be used to compare the proportion of subjects in each
of two groups who have a dichotomous outcome. For example, the proportion of
men who develop coronary heart disease (CHD) while being treated with folate can
be compared with the proportion who develop CHD while taking a placebo. The
chi-squared test is always two-sided; an equivalent test for one-sided hypotheses is the
one-sided Z test.

In an experiment or cohort study, effect size is specified by the difference between
P1, the proportion of subjects expected to have the outcome in one group, and P2,
the proportion expected in the other group. In a case–control study, P1 represents
the proportion of cases expected to have a particular risk factor, and P2 represents the
proportion of controls expected to have the risk factor. Variability is a function of P1
and P2, so it need not be specified.

To estimate the sample size for a study that will be analyzed with the chi-squared
test or Z test to compare two proportions, the investigator must

1. State the null hypothesis and decide whether the alternative hypothesis should be
one- or two-sided.

2. Estimate the effect size and variability in terms of P1, the proportion with the out-
come in one group, and P2, the proportion with the outcome in the other group.

3. Set α and β.

Appendix 6B gives the sample size requirements for several combinations of α

and β, and a range of values of P1 and P2. To estimate the sample size, look down
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the leftmost column of Tables 6B.1 or 6B.2 for the smaller of P1 and P2 (if necessary
rounded to the nearest 0.05). Next, read across for the difference between P1 and P2.
Based on the chosen values for α and β, the table gives the sample size required per
group.

Example 6.2 Calculating Sample Size When Using the Chi-Squared Test

Problem: The research question is whether elderly smokers have a greater incidence
of skin cancer than nonsmokers. A review of previous literature suggests that the 5-year
incidence of skin cancer is about 0.20 in elderly nonsmokers. At α(two-sided) = 0.05
and power = 0.80, how many smokers and nonsmokers will need to be studied to
determine whether the 5-year skin cancer incidence is at least 0.30 in smokers?

Solution: The ingredients for the sample size calculation are as follows:

1. Null Hypothesis: The incidence of skin cancer is the same in elderly smokers
and nonsmokers.
Alternative Hypothesis (two-sided): The incidence of skin cancer is different
in elderly smokers and nonsmokers.

2. P2 (incidence in nonsmokers) = 0.20; P1 (incidence in smokers) = 0.30. The
smaller of these values is 0.20, and the difference between them (P1 − P2) is 0.10.

3. α (two-sided) = 0.05; β = 1 - 0.80 = 0.20.

Looking across from 0.20 in the leftmost column in Table 6B.1 and down from
an expected difference of 0.10, the middle number for α (two-sided) = 0.05 and
β = 0.20 is the required sample size of 313 smokers and 313 nonsmokers. If the
investigator had chosen to use a one-sided alternative hypothesis, given that there is a
great deal of evidence suggesting that smoking is a carcinogen and none suggesting
that it prevents cancer, the sample size would be 251 smokers and 251 nonsmokers.

Often the investigator specifies the effect size in terms of the relative risk
(risk ratio) of the outcome in two groups of subjects. For example, an investigator
might study whether women who use oral contraceptives are at least twice as likely
as nonusers to have a myocardial infarction. In a cohort study (or experiment),
it is straightforward to convert back and forth between relative risk and the two
proportions (P1 and P2), since the relative risk is just P1 divided by P2 (or vice versa).

For a case–control study, however, the situation is a little more complex because
the relative risk must be approximated by the odds ratio, which equals [P1 × (1 −
P2)] ÷ [P2 × (1 − P1)]. The investigator must specify the odds ratio (OR) and P2 (the
proportion of controls exposed to the predictor variable). Then P1 (the proportion of
cases exposed to the predictor variable) is

P1 = OR × P2

(1 − P2) + (OR × P2)
For example, if the investigator expects that 10% of controls will be exposed to the
oral contraceptives (P2 = 0.1) and wishes to detect an odds ratio of 3 associated with
the exposure, then

P1 = (3 × 0.1)
(1 − 0.1) + (3 × 0.1)

= 0.3
1.2

= 0.25
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The Correlation Coefficient
Although the correlation coefficient (r) is not used frequently in sample size
calculations, it can be useful when the predictor and outcome variables are both
continuous. The correlation coefficient is a measure of the strength of the linear
association between the two variables. It varies between −1 and +1. Negative values
indicate that as one variable increases, the other decreases (like blood lead level and
IQ in children). The closer the absolute value of r is to 1, the stronger the association;
the closer to 0, the weaker the association. Height and weight in adults, for example,
are highly correlated in some populations, with r ≈ 0.9. Such high values, however,
are uncommon; many biologic associations have much smaller correlation coefficients.

Correlation coefficients are common in some fields of clinical research, such as
behavioral medicine, but using them to estimate the sample size has a disadvantage:
correlation coefficients have little intuitive meaning. When squared (r2) a correlation
coefficient represents the proportion of the spread (variance) in an outcome variable
that results from its linear association with a predictor variable, and vice versa. That’s
why small values of r, such as those ≤0.3, may be statistically significant if the sample
is large enough without being very meaningful clinically or scientifically, since they
‘‘explain’’ at most 9% of the variance.

An alternative—and often preferred—way to estimate the sample size for a study
in which the predictor and outcome variables are both continuous is to dichotomize
one of the two variables (say, at its median) and use the t test calculations instead. This
has the advantage of expressing the effect size as a ‘‘difference’’ between two groups.

To estimate sample size for a study that will be analyzed with a correlation
coefficient, the investigator must

1. State the null hypothesis, and decide whether the alternative hypothesis is one or
two-sided.

2. Estimate the effect size as the absolute value of the smallest correlation coefficient
(r) that the investigator would like to be able to detect. (Variability is a function
of r and is already included in the table and formula.)

3. Set α and β.

In Appendix 6C, look down the leftmost column of Table 6C for the effect
size (r). Next, read across the table to the chosen values for α and β, yielding
the total sample size required. Table 6C yields the appropriate sample size when
the investigator wishes to reject the null hypothesis that there is no association
between the predictor and outcome variables (e.g., r = 0). If the investigator wishes
to determine whether the correlation coefficient in the study differs from a value other
than zero (e.g., r = 0.4), she should see the text below Table 6C for the appropriate
methodology.

Example 6.3 Calculating Sample Size When Using the Correlation Coefficient in
a Cross-Sectional Study

Problem: The research question is whether urinary cotinine levels (a measure
of the intensity of current cigarette smoking) are correlated with bone density in
smokers. A previous study found a modest correlation (r = −0.3) between reported
smoking (in cigarettes per day) and bone density; the investigator anticipates that
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urinary cotinine levels will be at least as well correlated. How many smokers will
need to be enrolled, at α(two-sided) = 0.05 and β = 0.10?

Solution: The ingredients for the sample size calculation are as follows:

1. Null Hypothesis: There is no correlation between urinary cotinine level and
bone density in smokers.
Alternative Hypothesis: There is a correlation between urinary cotinine level
and bone density in smokers.

2. Effect size (r) = | − 0.3| = 0.3.
3. α(two-sided) = 0.05; β = 0.10.

Using Table 6C, reading across from r = 0.30 in the leftmost column and down
from α(two-sided) = 0.05 and β = 0.10, 113 smokers will be required.

OTHER CONSIDERATIONS AND SPECIAL ISSUES

Dropouts
Each sampling unit must be available for analysis; subjects who are enrolled in a
study but in whom outcome status cannot be ascertained (such as dropouts) do
not count in the sample size. If the investigator anticipates that any of her subjects
will not be available for follow-up, she should increase the size of the enrolled
sample accordingly. If, for example, the investigator estimates that 20% of her sample
will be lost to follow-up, then the sample size should be increased by a factor of
(1 ÷ [1 − 0.20]), or 1.25.

Categorical Variables
Ordinal variables can often be treated as continuous variables, especially if the
number of categories is relatively large (six or more) and if averaging the values
of the variable makes sense. In other situations, the best strategy is to change the
research hypothesis slightly by dichotomizing the categorical variable. As an example,
suppose a researcher is studying whether the sex of a diabetic patient is associated
with the number of times the patient visits a podiatrist in a year. The number of visits
is unevenly distributed: many people will have no visits, some will make one visit,
and only a few will make two or more visits. In this situation, the investigator could
estimate the sample size as if the outcome were dichotomous (no visits versus one or
more visits).

Survival Analysis
When an investigator wishes to compare which of two treatments is more effective
in prolonging life or in reducing the symptomatic phase of a disease, survival
analysis will be the appropriate technique for analyzing the data (2,3). Although
the outcome variable, say weeks of survival, appears to be continuous, the t test is
not appropriate because what is actually being assessed is not time (a continuous
variable) but the proportion of subjects (a dichotomous variable) still alive at each
point in time. A reasonable approximation can be made by dichotomizing the
outcome variable at the end of the anticipated follow-up period (e.g., the proportion
surviving for 6 months or more), and estimating the sample size with the chi-squared
test.
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Clustered Samples
Some research designs involve the use of clustered samples, in which subjects are
sampled by groups (Chapter 11). Consider, for example, a study of whether an
educational intervention directed at clinicians improves the rate of smoking cessation
among their patients. Suppose that 20 physicians are randomly assigned to the group
that receives the intervention and 20 physicians are assigned to a control group.
One year later, the investigators plan to review the charts of a random sample of 50
patients who had been smokers at baseline in each practice to determine how many
have quit smoking. Does the sample size equal 40 (the number of physicians) or 2,000
(the number of patients)? The answer, which lies somewhere in between those two
extremes, depends upon how similar the patients within a physician’s practice are (in
terms of their likelihood of smoking cessation) compared with the similarity among
all the patients. Estimating this quantity often requires obtaining pilot data, unless
another investigator has previously done a similar study. There are several techniques
for estimating the required sample size for a study using clustered samples (4–7), but
they are challenging and usually require the assistance of a statistician.

Matching
For a variety of reasons (Chapter 9), an investigator may choose to use a matched
design. The techniques in this chapter, which ignore any matching, nevertheless
provide reasonable estimates of the required sample size. More precise estimates can
be made using standard approaches (8) or an interactive Web-based program.

Multivariate Adjustment and Other Special Statistical Analyses
When designing an observational study, an investigator may decide that one or
more variables will confound the association between the predictor and outcome
(Chapter 9), and plan to use statistical techniques to adjust for these confounders
when she analyzes her results. When this adjustment will be included in testing the
primary hypothesis, the estimated sample size needs to take this into account.

Analytic approaches that adjust for confounding variables often increase the
required sample size (9,10). The magnitude of that increase depends on several
factors, including the prevalence of the confounder, the strength of the association
between the predictor and the confounder, and the strength of the association
between the confounder and the outcome. These effects are complex and no general
rule covers all situations.

Statisticians have developed multivariate methods such as linear regression and
logistic regression that allow the investigator to adjust for confounding variables.
One widely used statistical technique, Cox proportional hazards analysis, can
adjust both for confounders and for differences in length of follow-up. If one of
these techniques is going to be used to analyze the data, there are corresponding
approaches for estimating the required sample size (3,11–14). Sample size techniques
are also available for other designs, such as studies of potential genetic risk factors
or candidate genes (15–17), economic studies (18–20), dose–response studies (21),
or studies that involve more than two groups (22). Again, the Internet is a useful
resource for these more sophisticated approaches (e.g., search for ‘‘sample size’’ and
‘‘logistic regression’’).

It is usually easier, at least for novice investigators, to estimate the sample size
assuming a simpler method of analysis, such as the chi-squared test or the t test.
Suppose, for example, an investigator is planning a case–control study of whether
serum cholesterol level (a continuous variable) is associated with the occurrence of
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brain tumors (a dichotomous variable). Even if the eventual plan is to analyze the
data with the logistic regression technique, a ballpark sample size can be estimated
with the t test. It turns out that the simplified approaches usually produce sample size
estimates that are similar to those generated by more sophisticated techniques. An
experienced statistician may need to be consulted, however, if a grant proposal that
involves substantial costs is being submitted for funding: grant reviewers will expect
you to use a sophisticated approach even if they accept that the sample size estimates
are based on guesses about the risk of the outcome, the effect size, and so on.

Equivalence Studies
Sometimes the goal of a study is to show that the null hypothesis is correct and
that there really is no substantial association between the predictor and outcome
variables (23–26). A common example is a clinical trial to test whether a new drug
is as effective as an established drug. This situation poses a challenge when planning
sample size, because the desired effect size is zero (i.e., the investigator would like to
show that the two drugs are equally effective).

One acceptable method is to design the study to have substantial power (say,
0.90 or 0.95) to reject the null hypothesis when the effect size is small enough that
it would not be clinically important (e.g., a difference of 5 mg/dL in mean fasting
glucose levels). If the results of such a well-powered study show ‘‘no effect’’ (i.e.,
the 95% confidence interval excludes the prespecified difference of 5 mg/dL), then
the investigator can be reasonably sure that the two drugs have similar effects. One
problem with equivalence studies, however, is that the additional power and the small
effect size often require a very large sample size.

Another problem involves the loss of the usual safeguards that are inherent in the
paradigm of the null hypothesis, which protects a conventional study, such as one
that compares an active drug with a placebo, against Type I errors (falsely rejecting
the null hypothesis). The paradigm ensures that many problems in the design or
execution of a study, such as using imprecise measurements or inadequate numbers of
subjects, make it harder to reject the null hypothesis. Investigators in a conventional
study, who are trying to reject a null hypothesis, have a strong incentive to do the
best possible study. The same is not true for an equivalence study, in which the goal
is to find no difference, and the safeguards do not apply.

SAMPLE SIZE TECHNIQUES FOR DESCRIPTIVE STUDIES

Estimating the sample size for descriptive studies, including studies of diagnostic tests,
is based on somewhat different principles. Such studies do not have predictor and
outcome variables, nor do they compare different groups. Therefore the concepts of
power and the null and alternative hypotheses do not apply. Instead, the investigator
calculates descriptive statistics, such as means and proportions. Often, however,
descriptive studies (What is the prevalence of depression among elderly patients in a
medical clinic?) are also used to ask analytic questions (What are the predictors of
depression among these patients?). In this situation, sample size should be estimated
for the analytic study as well, to avoid the common problem of having inadequate
power for what turns out to be the question of greater interest.

Descriptive studies commonly report confidence intervals, a range of values
about the sample mean or proportion. A confidence interval is a measure of the
precision of a sample estimate. The investigator sets the confidence level, such as
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95% or 99%. An interval with a greater confidence level (say 99%) is wider, and
therefore more likely to include the true population value, than an interval with a
lower confidence level (90%).

The width of a confidence interval depends on the sample size. For example, an
investigator might wish to estimate the mean score on the U.S. Medical Licensing
Examination in a group of medical students. From a sample of 200 students, she
might estimate that the mean score in the population of all students is 215, with
a 95% confidence interval from 210 to 220. A smaller study, say with 50 students,
might have about the same mean score but would almost certainly have a wider 95%
confidence interval.

When estimating sample size for descriptive studies, the investigator specifies
the desired level and width of the confidence interval. The sample size can then be
determined from the tables or formulas in the appendix.

Continuous Variables
When the variable of interest is continuous, a confidence interval around the mean
value of that variable is often reported. To estimate the sample size for that confidence
interval, the investigator must

1. Estimate the standard deviation of the variable of interest.
2. Specify the desired precision (total width) of the confidence interval.
3. Select the confidence level for the interval (e.g., 95%, 99%).

To use Appendix 6D, standardize the total width of the interval (divide it by
the standard deviation of the variable), then look down the leftmost column of
Table 6D for the expected standardized width. Next, read across the table to the
chosen confidence level for the required sample size.

Example 6.4 Calculating Sample Size for a Descriptive Study of a Continuous
Variable

Problem: The investigator seeks to determine the mean IQ among third graders
in an urban area with a 99% confidence interval of ±3 points. A previous study
found that the standard deviation of IQ in a similar city was 15 points.

Solution: The ingredients for the sample size calculation are as follows:

1. Standard deviation of variable (SD) = 15 points.
2. Total width of interval = 6 points (3 points above and 3 points below). The

standardized width of interval = total width ÷ SD = 6 ÷ 15 = 0.4.
3. Confidence level = 99%.

Reading across from a standardized width of 0.4 in the leftmost column of
Table 6D and down from the 99% confidence level, the required sample size is 166
third graders.

Dichotomous Variables
In a descriptive study of a dichotomous variable, results can be expressed as a
confidence interval around the estimated proportion of subjects with one of the values.
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This includes studies of the sensitivity or specificity of a diagnostic test, which appear
at first glance to be continuous variables but are actually dichotomous—proportions
expressed as percentages (Chapter 12). To estimate the sample size for that confidence
interval, the investigator must

1. Estimate the expected proportion with the variable of interest in the population.
(If more than half of the population is expected to have the characteristic, then plan
the sample size based on the proportion expected not to have the characteristic.)

2. Specify the desired precision (total width) of the confidence interval.
3. Select the confidence level for the interval (e.g., 95%).

In Appendix 6E, look down the leftmost column of Table 6E for the expected
proportion with the variable of interest. Next, read across the table to the chosen
width and confidence level, yielding the required sample size.

Example 6.5 provides a sample size calculation for studying the sensitivity of a
diagnostic test, which yields the required number of subjects with the disease. When
studying the specificity of the test, the investigator must estimate the required number
of subjects who do not have the disease. There are also techniques for estimating
the sample size for studies of receiver operating characteristic (ROC) curves (27),
likelihood ratios (28), and reliability (29) (Chapter 12).

Example 6.5 Calculating Sample Size for a Descriptive Study of a Dichotomous
Variable

Problem: The investigator wishes to determine the sensitivity of a new diagnostic
test for pancreatic cancer. Based on a pilot study, she expects that 80% of patients with
pancreatic cancer will have positive tests. How many such patients will be required
to estimate a 95% confidence interval for the test’s sensitivity of 0.80 ± 0.05?

Solution: The ingredients for the sample size calculation are as follows:

1. Expected proportion = 0.20. (Because 0.80 is more than half, sample size is
estimated from the proportion expected to have a negative result, that is, 0.20.)

2. Total width = 0.10 (0.05 below and 0.05 above).
3. Confidence level = 95%.

Reading across from 0.20 in the leftmost column of Table 6E and down from a
total width of 0.10, the middle number (representing a 95% confidence level) yields
the required sample size of 246 patients with pancreatic cancer.

WHAT TO DO WHEN SAMPLE SIZE IS FIXED

Especially when doing secondary data analysis, the sample size may have been
determined before you design your study. In this situation, or if the number of
participants who are available or affordable for study is limited, the investigator must
work backward from the fixed sample size. She estimates the effect size that can be
detected at a given power (usually 80%) or, less commonly, the power to detect a
given effect. The investigator can use the sample size tables in the chapter appendixes,
interpolating when necessary, or use the sample size formulas in the appendixes for
estimating the effect size.
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A good general rule is that a study should have a power of 80% or greater to
detect a reasonable effect size. It is often tempting to pursue research hypotheses that
have less power if the cost of doing so is small, such as when doing an analysis of
data that have already been collected. The investigator should keep in mind, however,
that she might face the difficulty of interpreting (and publishing) a study that may
have found no effect because of insufficient power; the broad confidence intervals will
reveal the possibility of a substantial effect in the population from which the small
study sample was drawn.

Example 6.6 Calculating the Detectable Effect Size When Sample Size is Fixed

Problem: An investigator determines that there are 100 patients with systemic
lupus erythematosus (SLE) who might be willing to participate in a study of whether
a 6-week meditation program affects disease activity, as compared with a control
group that receives a pamphlet describing relaxation. If the standard deviation of the
change in a validated SLE disease activity scale score is expected to be five points in
both the control and the treatment groups, what size difference will the investigator
be able to detect between the two groups, at α(two-sided) = 0.05 and β = 0.20?

Solution: In Table 6A, reading down from α(two-sided) = 0.05 and β = 0.20
(the rightmost column in the middle triad of numbers), 45 patients per group are
required to detect a standardized effect size of 0.6, which is equal to three points
(0.6 × 5 points). The investigator (who will have about 50 patients per group) will
be able to detect a difference of a little less than three points between the two groups.

STRATEGIES FOR MINIMIZING SAMPLE SIZE
AND MAXIMIZING POWER

When the estimated sample size is greater than the number of subjects that can be
studied realistically, the investigator should proceed through several steps. First, the
calculations should be checked, as it is easy to make mistakes. Next, the ‘‘ingredients’’
should be reviewed. Is the effect size unreasonably small or the variability unreason-
ably large? Could α or β, or both, be increased without harm? Would a one-sided
alternative hypothesis be adequate? Is the confidence level too high or the interval
unnecessarily narrow?

These technical adjustments can be useful, but it is important to realize that
statistical tests ultimately depend on the information contained in the data. Many
changes in the ingredients, such as reducing power from 90% to 80%, do not
improve the quantity or quality of the data that will be collected. There are, however,
several strategies for reducing the required sample size or for increasing power for
a given sample size that actually increase the information content of the collected
data. Many of these strategies involve modifications of the research hypothesis; the
investigator should carefully consider whether the new hypothesis still answers the
research question that she wishes to study.

Use Continuous Variables
When continuous variables are an option, they usually permit smaller sample sizes
than dichotomous variables. Blood pressure, for example, can be expressed either as
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millimeters of mercury (continuous) or as the presence or absence of hypertension
(dichotomous). The former permits a smaller sample size for a given power or a
greater power for a given sample size.

In Example 6.7, the continuous outcome addresses the effect of nutrition supple-
ments on muscle strength among the elderly. The dichotomous outcome is concerned
with its effects on the proportion of subjects who have at least a minimal amount of
strength, which may be a more valid surrogate for potential fall-related morbidity.

Example 6.7 Use of Continuous versus Dichotomous Variables

Problem: Consider a placebo-controlled trial to determine the effect of nutrition
supplements on strength in elderly nursing home residents. Previous studies have
established that quadriceps strength (as peak torque in newton-meters) is approxi-
mately normally distributed, with a mean of 33 N·m and a standard deviation of 10
N·m, and that about 10% of the elderly have very weak muscles (strength <20 N·m).
Nutrition supplements for 6 months are anticipated to increase strength by 5 N·m as
compared with the usual diet. This change in mean strength can be estimated, based
on the distribution of quadriceps strength in the elderly, to correspond to a reduction
in the proportion of the elderly who are very weak to about 5%.

One design might treat strength as a dichotomous variable: very weak versus not
very weak. Another might use all the information contained in the measurement
and treat strength as a continuous variable. How many subjects would each design
require at α(two-sided) = 0.05 and β = 0.20? How does the change in design affect
the research question?

Solution: The ingredients for the sample size calculation using a dichotomous
outcome variable (very weak versus not very weak) are as follows:

1. Null Hypothesis: The proportion of elderly nursing home residents who are very
weak (peak quadriceps torque <20 N·m) after receiving 6 months of nutrition
supplements is the same as the proportion who are very weak in those on a usual diet.
Alternative Hypothesis: The proportion of elderly nursing home residents who
are very weak (peak quadriceps torque <20 N·m) after receiving 6 months of
nutrition supplements differs from the proportion in those on a usual diet.

2. P1 (prevalence of being very weak on usual diet) = 0.10; P2 (in supplement
group) = 0.05. The smaller of these values is 0.05, and the difference between
them (P1 − P2) is 0.05.

3. α(two-sided) = 0.05; β = 0.20.

Using Table 6B.1, reading across from 0.05 in the leftmost column and down
from an expected difference of 0.05, the middle number (for α[two-sided] = 0.05
and β = 0.20), this design would require 473 subjects per group.

The ingredients for the sample size calculation using a continuous outcome
variable (quadriceps strength as peak torque) are as follows:

1. Null Hypothesis: Mean quadriceps strength (as peak torque in N·m) in elderly
nursing home residents after receiving 6 months of nutrition supplements is the
same as mean quadriceps strength in those on a usual diet.
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Alternative Hypothesis: Mean quadriceps strength (as peak torque in N·m) in
elderly nursing home residents after receiving 6 months of nutrition supplements
differs from mean quadriceps strength in those on a usual diet.

2. Effect size = 5 N·m
3. Standard deviation of quadriceps strength = 10 N·m
4. Standardized effect size = effect size ÷ standard deviation = 5 N·m ÷10 N·m

= 0.5.
5. α (two-sided) 0.05; β = 0.20.

Using Table 6A, reading across from a standardized effect size of 0.50, with
α(two-sided) = 0.05 and β = 0.20, this design would require about 64 subjects in
each group. (In this example, the shortcut sample size estimate from page 68 of
16 ÷ (standardized effect size)2, or 16 ÷ 0.52 gives the same estimate of 64 subjects
per group.) The bottom line is that the use of an outcome variable that was continuous
rather than dichotomous meant that a substantially smaller sample size needed to
study this research question

Use Paired Measurements
In some experiments or cohort studies with continuous outcome variables, paired
measurements—one at baseline, another at the conclusion of the study—can be made
in each subject. The outcome variable is the change between these two measurements.
In this situation, a t test on the paired measurements can be used to compare the
mean value of this change in the two groups. This technique often permits a smaller
sample size because, by comparing each subject with herself, it removes the baseline
between-subject part of the variability of the outcome variable. For example, the
change in weight on a diet has less variability than the final weight, because final
weight is highly correlated with initial weight. Sample size for this type of t test is
estimated in the usual way, except that the standardized effect size (E/S in Table 6A)
is the anticipated difference in the change in the variable divided by the standard
deviation of that change.

Example 6.8 Use of the t Test with Paired Measurements

Problem: Recall Example 6.1, in which the investigator studying the treatment
of asthma is interested in determining whether salbutamol can improve FEV1 by
200 mL compared with ipratropium bromide. Sample size calculations indicated
that 394 subjects per group are needed, more than are likely to be available.
Fortunately, a colleague points out that asthmatic patients have great differences
in their FEV1 values before treatment. These between-subject differences account
for much of the variability in FEV1 after treatment, therefore obscuring the effect
of treatment. She suggests using a paired t test to compare the changes in FEV1
in the two groups. A pilot study finds that the standard deviation of the change
in FEV1 is only 250 mL. How many subjects would be required per group, at
α(two-sided) = 0.05 and β = 0.20?
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Solution: The ingredients for the sample size calculation are as follows:

1. Null Hypothesis: Change in mean FEV1 after 2 weeks of treatment is the
same in asthmatic patients treated with salbutamol as it is in those treated with
ipratropium bromide.
Alternative Hypothesis: Change in mean FEV1 after 2 weeks of treatment is
different in asthmatic patients treated with salbutamol from what it is in those
treated with ipratropium bromide.

2. Effect size = 200 mL.
3. Standard deviation of the outcome variable = 250 mL.
4. Standardized effect size = effect size ÷ standard deviation = 200 mL ÷

250 mL = 0.8.
5. α(two-sided) = 0.05; β = 1 − 0.80 = 0.20.

Using Table 6A, this design would require about 26 participants per group, a
much more reasonable sample size than the 394 per group in ‘‘Example 6.1’’. In
this example, the shortcut sample size estimate of 16 ÷ (standardized effect size)2,
or 16 ÷ 0.82 gives a similar estimate of 25 subjects per group.

A Brief Technical Note. This chapter always refers to two-sample t tests, which
are used when comparing the mean values of an outcome variable in two groups
of subjects. A two-sample t test can be unpaired, if the outcome variable itself is
being compared between two groups (see ‘‘Example 6.1’’), or paired if the outcome
is the change in a pair of measurements, say before and after an intervention (see
‘‘Example 6.8’’).

A third type of t test, the one-sample paired t test, compares the mean change
in a pair of measurements within a single group to zero change. This type of analysis
is reasonably common in time series designs (Chapter 10), a before–after approach
to examining treatments that are difficult to randomize (for example, the effect of
elective hysterectomy, a decision few women are willing to leave to a coin toss, on
quality of life). However, it is a fairly weak design because the absence of a comparison
group makes it difficult to know what would have happened had the subjects been
left untreated (Chapter 10). When planning a study that will be analyzed with a
one-sample paired t test, the sample size in Appendix 6A represents the total number
of subjects (because there is only one group). Appendix 6F presents additional
information on the use and misuse of one- and two-sample t tests.

Use More Precise Variables
Because they reduce variability, more precise variables permit a smaller sample size
in both analytic and descriptive studies. Even a modest change in precision can have
a substantial effect on sample size. For example, when using the t test to estimate
sample size, a 20% decrease in the standard deviation of the outcome variable results
in a 36% decrease in the sample size. Techniques for increasing the precision of a
variable, such as making measurements in duplicate, are presented in Chapter 4.

Use Unequal Group Sizes
Because an equal number of subjects in each of two groups usually gives the greatest
power for a given total number of subjects, Tables 6A, 6B.1, and 6B.2 in the
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appendixes assume equal sample sizes in the two groups. Sometimes, however, the
distribution of subjects is not equal in the two groups, or it is easier or less expensive
to recruit study subjects for one group than the other. It may turn out, for example,
that an investigator wants to estimate sample size based on the 30% of the subjects
in a cohort who smoke cigarettes (compared with 70% who do not smoke). Or, in
a case–control study, the number of persons with the disease may be small, but it
may be possible to sample a much larger number of controls. In general, the gain
in power when the size of one group is increased to twice the size of the other is
considerable; tripling and quadrupling one of the groups provide progressively smaller
gains. Sample sizes for unequal groups can be computed from the formulas found in
the text to Appendixes 6A and 6B or from the Web.

Here is a useful approximation for estimating sample size for case–control studies
of dichotomous risk factors and outcomes using c controls per case. If n represents
the number of cases that would have been required for one control per case (at a given
α, β, and effect size), then the approximate number of cases (n′) with cn′ controls
that will be required is

n′ = [(c + 1) ÷ 2c] × n.

For example, with c = 2 controls per case, then [(2 + 1) ÷ (2 × 2)] × n = 3/4 ×
n, and only 75% as many cases are needed. As c gets larger, n′ approaches 50% of n
(when c = 10, for example, n’ = 11/20 × n).

Example 6.9 Use of Multiple Controls per Case in a Case–Control Study

Problem: An investigator is studying whether exposure to household insecticide is
a risk factor for aplastic anemia. The original sample size calculation indicated that
25 cases would be required, using one control per case. Suppose that the investigator
has access to only 18 cases. How should the investigator proceed?

Solution: The investigator should consider using multiple controls per case (after
all, she can find many patients who do not have aplastic anemia). By using three
controls per case, for example, the approximate number of cases that will be required
is [(3 + 1) ÷ (2 × 3)] × 25 = 17.

Use a More Common Outcome
When the outcome is dichotomous, using a more frequent outcome, up to a frequency
of 0.5, is usually one of the best ways to increase power: if an outcome occurs more
often, there is more of a chance to detect its predictors. Power actually depends
more on the number of subjects with a specified outcome than it does on the total
number of subjects in the study. Studies with rare outcomes, like the occurrence of
breast cancer in healthy women, require very large sample sizes to have adequate
power.

One of the best ways to make an outcome more common is to enroll sub-
jects at greater risk of developing that outcome (such as women with a family
history of breast cancer). Others are to extend the follow-up period, so that
there is more time to accumulate outcomes, or to loosen the definition of what
constitutes an outcome (e.g., by including ductal carcinoma in situ). All these tech-
niques, however, may change the research question, so they should be used with
caution.
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Example 6.10 Use of a More Common Outcome

Problem: Suppose an investigator is comparing the efficacy of an antiseptic gargle
versus a placebo gargle in preventing upper respiratory infections. Her initial
calculations indicated that her anticipated sample of 200 volunteer college students
was inadequate, in part because she expected that only about 20% of her subjects
would have an upper respiratory infection during the 3-month follow-up period.
Suggest a few changes in the study plan.

Solution: Here are two possible solutions: (a) study a sample of pediatric interns
and residents, who are likely to experience a much greater incidence of upper
respiratory infections than college students; or (b) follow the sample for a longer
period of time, say 6 or 12 months. Both of these solutions involve modification of the
research hypothesis, but neither change seems sufficiently large to affect the overall
research question about the efficacy of antiseptic gargle.

HOW TO ESTIMATE SAMPLE SIZE WHEN THERE
IS INSUFFICIENT INFORMATION

Often the investigator finds that she is missing one or more of the ingredients for
the sample size calculation and becomes frustrated in her attempts to plan the study.
This is an especially frequent problem when the investigator is using an instrument
of her design (such as a new questionnaire on quality of life in patients with urinary
incontinence). How should she go about deciding what effect size or standard
deviation to use?

The first strategy is an extensive search for previous and related findings on the
topic and on similar research questions. Roughly comparable situations and mediocre
or dated findings may be good enough. (For example, are there data on quality of
life among patients with other urologic problems, or with related conditions like
having a colostomy?) If the literature review is unproductive, she should contact
other investigators about their judgment on what to expect, and whether they are
aware of any unpublished results that may be relevant. If there is still no information
available, she may consider doing a small pilot study or obtaining a data set for a
secondary analysis to obtain the missing ingredients before embarking on the main
study. (Indeed, a pilot study is highly recommended for almost all studies that involve
new instruments, measurement methods, or recruitment strategies. They save time in
the end by enabling investigators to do a much better job planning the main study).
Pilot studies are useful for estimating the standard deviation of a measurement,
or the proportion of subjects with a particular characteristic. Another trick is to
recognize that for continuous variables that have a roughly bell-shaped distribution,
the standard deviation can be estimated as one-quarter of the difference between
the high and low ends of the range of values that occur commonly, ignoring extreme
values. For example, if most subjects are likely to have a serum sodium level between
135 and 143 mEq/L, the standard deviation of serum sodium is about 2 mEq/L
(1/4 × 8 mEq/L).

Alternatively, the investigator can determine the detectable effect size based on
a value that she considers to be clinically meaningful. For example, suppose that an
investigator is studying a new invasive treatment for severe refractory gastroparesis, a
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condition in which at most 5% of patients improve spontaneously. If the treatment is
shown to be effective, she thinks that gastroenterologists would be willing to treat up to five
patients to produce a sustained benefit in one of those patients (because the treatment has
substantial side effects and is expensive, she doesn’t think that the number would be more
than 5). A number needed to treat (NNT) of 5 corresponds to a risk difference of 20%
(NNT = 1/risk difference), so the investigator should estimate the sample size based on
a comparison of P1 = 5% versus P2 = 25% (i.e., 59 subjects per group at a power of 0.80
and a two-sided α of 0.05).

Another strategy, when the mean and standard deviation of a continuous or
categorical variable are in doubt, is to dichotomize that variable. Categories can
be lumped into two groups, and continuous variables can be split at their mean
or median. For example, dividing quality of life into ‘‘better than the median’’ or
‘‘the median or less’’ avoids having to estimate its standard deviation in the sample,
although one still has to estimate what proportions of subjects would be above the
median in the two groups being studied. The chi-squared statistic can then be used
to make a reasonable, albeit somewhat high, estimate of the sample size.

If all this fails, the investigator should just make an educated guess about the
likely values of the missing ingredients. The process of thinking through the problem
and imagining the findings will often result in a reasonable estimate, and that is what
sample size planning is about. This is usually a better option than just deciding to
design the study to have 80% power at a two-sided α of 0.05 to detect a standardized
effect size of, say, 0.5 between the two groups (n = 64, per group, by the way). Very
few grant reviewers will accept that sort of arbitrary decision.

COMMON ERRORS TO AVOID

Many inexperienced investigators (and some experienced ones!) make mistakes when
planning sample size. A few of the more common ones follow:

1. The most common error is estimating the sample size late during the design of
the study. Do it early in the process, when fundamental changes can still be made.

2. Dichotomous variables can appear to be continuous when they are expressed
as a percentage or rate. For example, vital status (alive or dead) might be
misinterpreted as continuous when expressed as percent alive. Similarly, in survival
analysis a dichotomous outcome can appear to be continuous (e.g., median survival
in months). For all of these, the outcome itself is actually dichotomous and the
appropriate simple approach in planning sample size would be the chi-squared test.

3. The sample size estimates the number of subjects with outcome data, not the num-
ber who need to be enrolled. The investigator should always plan for dropouts
and subjects with missing data.

4. The tables at the end of the chapter assume that the two groups being studied have
equal sample sizes. Often that is not the case; for example, a cohort study of whether
use of vitamin supplements reduces the risk of sunburn would probably not enroll
equal numbers of subjects who used, or did not use, vitamins. If the sample sizes
are not equal, then the formulas that follow the tables or the Web should be used.
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5. When using the t test to estimate the sample size, what matters is the standard
deviation of the outcome variable. Therefore if the outcome is change in a con-
tinuous variable, the investigator should use the standard deviation of that change
rather than the standard deviation of the variable itself.

6. Be aware of clustered data. If there appear to be two ‘‘levels’’ of sample size (e.g.,
one for physicians and another for patients), clustering is a likely problem and the
tables in the appendices do not apply.

SUMMARY

1. When estimating sample size for an analytic study, the following steps need to
be taken: (a) state the null and alternative hypotheses, specifying the number of
sides; (b) select a statistical test that could be used to analyze the data, based on
the types of predictor and outcome variables; (c) estimate the effect size (and
its variability, if necessary); and (d) specify appropriate values for α and β, based
on the importance of avoiding Type I and Type II errors.

2. Other considerations in calculating sample size for analytic studies include adjusting
for potential dropouts, and strategies for dealing with categorical variables,
survival analysis, clustered samples, multivariate adjustment, and equivalence
studies.

3. The steps for estimating sample size for descriptive studies, which do not have
hypotheses, are to (a) estimate the proportion of subjects with a dichotomous
outcome or the standard deviation of a continuous outcome; (b) specify the
desired precision (width of the confidence interval); and (c) specify the confidence
level (e.g., 95%).

4. When sample size is predetermined, the investigator can work backward to estimate
the detectable effect size or, less commonly, the power.

5. Strategies to minimize the required sample size include using continuous vari-
ables, more precise measurements, paired measurements, unequal group sizes,
and more common outcomes.

6. When there seems to be not enough information to estimate the sample size, the
investigator should review the literature in related areas, do a small pilot study
or choose an effect size that is clinically meaningful; standard deviation can be
estimated as 1/4 of the range of commonly encountered values. If none of these
is feasible, an educated guess can give a useful ballpark estimate.
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APPENDIX 6A

Sample Size Required per Group When Using the t Test to
Compare Means of Continuous Variables

TABLE 6A Sample Size per Group for Comparing Two Means
One-sided α = 0.005 0.025 0.05
Two-sided α = 0.01 0.05 0.10

E/S∗ β = 0.05 0.10 0.20 0.05 0.10 0.20 0.05 0.10 0.20

0.10 3,565 2,978 2,338 2,600 2,103 1,571 2,166 1,714 1,238
0.15 1,586 1,325 1,040 1,157 935 699 963 762 551
0.20 893 746 586 651 527 394 542 429 310
0.25 572 478 376 417 338 253 347 275 199
0.30 398 333 262 290 235 176 242 191 139
0.40 225 188 148 164 133 100 136 108 78
0.50 145 121 96 105 86 64 88 70 51
0.60 101 85 67 74 60 45 61 49 36
0.70 75 63 50 55 44 34 45 36 26
0.80 58 49 39 42 34 26 35 28 21
0.90 46 39 21 34 27 21 28 22 16
1.00 38 32 26 27 23 17 23 18 14

∗ E/S is the standardized effect size, computed as E (expected effect size) divided by S (SD of the outcome variable).
To estimate the sample size, read across from the standardized effect size, and down from the specified values of α and
β for the required sample size in each group.

Calculating Variability
Variability is usually reported as either the standard deviation or the standard error of
the mean (SEM). For the purposes of sample size calculation, the standard deviation
of the variable is most useful. Fortunately, it is easy to convert from one measure to
another: the standard deviation is simply the standard error times the square root of
N , where N is the number of subjects that makes up the mean. Suppose a study
reported that the weight loss in 25 persons on a low-fiber diet was 10 ± 2 kg (mean
± SEM). The standard deviation would be 2 × √

25 = 10 kg.

General Formula for Other Values
The general formula for other values of E, S, α, and β, or for unequal group sizes, is
as follows. Let:

zα = the standard normal deviate for α (If the alternative hypothesis is
two-sided, zα = 2.58when α = 0.01,
zα = 1.96 when α = 0.05, and zα = 1.645 when α = 0.10. If the

alternative hypothesis is one-sided,
zα = 1.645 when α = 0.05.)

zβ = the standard normal deviate for β (zβ = 0.84 when β = 0.20, and
zβ = 1.282when β = 0.10)

q1 = proportion of subjects in group 1
q2 = proportion of subjects in group 2
N = total number of subjects required
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Then:

N = [(1/q1 + 1/q2)S2(zα + zβ)2] ÷ E2.

Readers who would like to skip the work involved in hand calculations with this for-
mula can get an instant answer from a calculator on our website (www.epibiostat.ucsf.
edu/dcr/)(Because this formula is based on approximating the t statistic with a z
statistic, it will slightly underestimate the sample size when N is less than about 30.
Table 6A uses the t statistic to estimate sample size.)

http://www.epibiostat.ucsf.edu/dcr/
http://www.epibiostat.ucsf.edu/dcr/
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APPENDIX 6B

Sample Size Required per Group When Using the
Chi-Squared Statistic or Z Test to Compare Proportions of
Dichotomous Variables

TABLE 6B.1 Sample Size per Group for Comparing Two Proportions
Upper number: α=0.05 (one-sided) or α=0.10 (two-sided); β =0.20

Middle number: α=0.025 (one-sided) or α=0.05 (two-sided); β = 0.20
Lower number: α=0.025 (one-sided) or α=0.05 (two-sided); β =0.10

Smaller
Difference Between P1 and P2

of P1 and P2
∗ 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

0.05 381 129 72 47 35 27 22 18 15 13
473 159 88 59 43 33 26 22 18 16
620 207 113 75 54 41 33 27 23 19

0.10 578 175 91 58 41 31 24 20 16 14
724 219 112 72 51 37 29 24 20 17
958 286 146 92 65 48 37 30 25 21

0.15 751 217 108 67 46 34 26 21 17 15
944 270 133 82 57 41 32 26 21 18

1,252 354 174 106 73 53 42 33 26 22
0.20 900 251 121 74 50 36 28 22 18 15

1,133 313 151 91 62 44 34 27 22 18
1,504 412 197 118 80 57 44 34 27 23

0.25 1,024 278 132 79 53 38 29 23 18 15
1,289 348 165 98 66 47 35 28 22 18
1,714 459 216 127 85 60 46 35 28 23

0.30 1,123 300 141 83 55 39 29 23 18 15
1,415 376 175 103 68 48 36 28 22 18
1,883 496 230 134 88 62 47 36 28 23

0.35 1,197 315 146 85 56 39 29 23 18 15
1,509 395 182 106 69 48 36 28 22 18
2,009 522 239 138 90 62 47 35 27 22

0.40 1,246 325 149 86 56 39 29 22 17 14
1,572 407 186 107 69 48 35 27 21 17
2,093 538 244 139 90 62 46 34 26 21

0.45 1,271 328 149 85 55 38 28 21 16 13
1,603 411 186 106 68 47 34 26 20 16
2,135 543 244 138 88 60 44 33 25 19

0.50 1,271 325 146 83 53 36 26 20 15 —
1,603 407 182 103 66 44 32 24 18 —
2,135 538 239 134 85 57 42 30 23 —

0.55 1,246 315 141 79 50 34 24 18 — —
1,572 395 175 98 62 41 29 22 — —
2,093 522 230 127 80 53 37 27 — —
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TABLE 6B.1 (Continued)
Upper number: α=0.05 (one-sided) or α=0.10 (two-sided); β =0.20

Middle number: α=0.025 (one-sided) or α=0.05 (two-sided); β =0.20
Lower number: α=0.025 (one-sided) or α=0.05 (two-sided); β =0.10

Smaller
Difference Between P1 and P2

of P1 and P2
∗ 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

0.60 1,197 300 132 74 46 31 22 — — —
1,509 376 165 91 57 37 26 — — —
2,009 496 216 118 73 48 33 — — —

0.65 1,123 278 121 67 41 27 — — — —
1,415 348 151 82 51 33 — — — —
1,883 459 197 106 65 41 — — — —

0.70 1,024 251 108 58 35 — — — — —
1,289 313 133 72 43 — — — — —
1,714 412 174 92 54 — — — — —

0.75 900 217 91 47 — — — — — —
1,133 270 112 59 — — — — — —
1,504 354 146 75 — — — — — —

0.80 751 175 72 — — — — — — —
944 219 88 — — — — — — —

1,252 286 113 — — — — — — —
0.85 578 129 — — — — — — — —

724 159 — — — — — — — —
958 207 — — — — — — — —

0.90 381 — — — — — — — — —
473 — — — — — — — — —
620 — — — — — — — — —

The one-sided estimates use the z statistic.
∗ P1 represents the proportion of subjects expected to have the outcome in one group; P2 in the other group. (In a
case–control study, P1 represents the proportion of cases with the predictor variable; P2 the proportion of controls with
the predictor variable.) To estimate the sample size, read across from the smaller of P1 and P2, and down the expected
difference between P1 and P2. The three numbers represent the sample size required in each group for the specified
values of α and β .
Additional detail for P1 and P2 between 0.01 and 0.10 is given in Table 6B.2.

General Formula for Other Values
The general formula for calculating the total sample size (N ) required for a study
using the z statistic, where P1 and P2 are defined above, is as follows (see Appendix
6A for definitions of Zα and Zβ). Let

q1 = proportion of subjects in group 1
q2 = proportion of subjects in group 2
N = total number of subjects
P = q1P1 + q2P2

Then

N = [zα

√
P(1 − P)(1/q1 + 1/q2) + zβ

√
P1(1 − P1)(1/q1) + P2(1 − P2)(1/q2)]2

(P1 − P2)2 .
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Readers who would like to skip the work involved in hand calculations with this for-
mula can get an instant answer from a calculator on our website (www.epibiostat.ucsf.
edu/dcr/) (This formula does not include the Fleiss-Tytun-Ury continuity correc-
tion and therefore underestimates the required sample size by up to about 10%.
Tables 6B.1 and 6B.2 do include this continuity correction.)

TABLE 6B.2 Sample Size per Group for Comparing Two Proportions, the Smaller
of Which Is Between 0.01 and 0.10

Upper number: α = 0.05 (one-sided) or α = 0.10 (two-sided); β = 0.20
Middle number: α = 0.025 (one-sided) or α = 0.05 (two-sided); β = 0.20
Lower number: α = 0.025 (one-sided) or α = 0.05 (two-sided); β = 0.10

Smaller
Expected Difference Between P1 and P2

of P1 and P2 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

0.01 2,019 700 396 271 204 162 134 114 98 87
2,512 864 487 332 249 197 163 138 120 106
3,300 1,125 631 428 320 254 209 178 154 135

0.02 3,205 994 526 343 249 193 157 131 113 97
4,018 1,237 651 423 306 238 192 161 137 120
5,320 1,625 852 550 397 307 248 207 177 154

0.03 4,367 1,283 653 414 294 224 179 148 126 109
5,493 1,602 813 512 363 276 220 182 154 133
7,296 2,114 1,067 671 474 359 286 236 199 172

0.04 5,505 1,564 777 482 337 254 201 165 139 119
6,935 1,959 969 600 419 314 248 203 170 146
9,230 2,593 1,277 788 548 410 323 264 221 189

0.05 6,616 1,838 898 549 380 283 222 181 151 129
8,347 2,308 1,123 686 473 351 275 223 186 159

11,123 3,061 1,482 902 620 460 360 291 242 206
0.06 7,703 2,107 1,016 615 422 312 243 197 163 139

9,726 2,650 1,272 769 526 388 301 243 202 171
12,973 3,518 1,684 1,014 691 508 395 318 263 223

0.07 8,765 2,369 1,131 680 463 340 263 212 175 148
11,076 2,983 1,419 850 577 423 327 263 217 183
14,780 3,965 1,880 1,123 760 555 429 343 283 239

0.08 9,803 2,627 1,244 743 502 367 282 227 187 158
12,393 3,308 1,562 930 627 457 352 282 232 195
16,546 4,401 2,072 1,229 827 602 463 369 303 255

0.09 10,816 2,877 1,354 804 541 393 302 241 198 167
13,679 3,626 1,702 1,007 676 491 377 300 246 207
18,270 4,827 2,259 1,333 893 647 495 393 322 270

0.10 11,804 3,121 1,461 863 578 419 320 255 209 175
14,933 3,936 1,838 1,083 724 523 401 318 260 218
19,952 5,242 2,441 1,434 957 690 527 417 341 285

The one-sided estimates use the z statistic.

http://www.epibiostat.ucsf.edu/dcr/
http://www.epibiostat.ucsf.edu/dcr/
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APPENDIX 6C

Total Sample Size Required When Using the Correlation
Coefficient (r)

TABLE 6C Sample Size for Determining Whether a Correlation Coefficient
Differs from Zero

One-sided α = 0.005 0.025 0.05
Two-sided α = 0.01 0.05 0.0101

β = 0.05 0.10 0.20 0.05 0.10 0.20 0.05 0.10 0.20
r∗

0.05 7,118 5,947 4,663 5,193 4,200 3,134 4,325 3,424 2,469
0.10 1,773 1,481 1,162 1,294 1,047 782 1,078 854 616
0.15 783 655 514 572 463 346 477 378 273
0.20 436 365 287 319 259 194 266 211 153
0.25 276 231 182 202 164 123 169 134 98
0.30 189 158 125 139 113 85 116 92 67
0.35 136 114 90 100 82 62 84 67 49
0.40 102 86 68 75 62 47 63 51 37
0.45 79 66 53 58 48 36 49 39 29
0.50 62 52 42 46 38 29 39 31 23
0.60 40 34 27 30 25 19 26 21 16
0.70 27 23 19 20 17 13 17 14 11
0.80 18 15 13 14 12 9 12 10 8

∗ To estimate the total sample size, read across from r (the expected correlation coefficient) and down from the specified
values of α and β .

General Formula for Other Values
The general formula for other values of r, α, and β is as follows (see Appendix 6A for
definitions of Zα and Zβ). Let

r = expected correlation coefficient
C = 0.5 × ln[(l + r)/(l − r)]
N = Total number of subjects required

Then

N = [(zα + zβ) ÷ C]2 + 3.

Estimating Sample Size for Difference between Two Correlations
If testing whether a correlation, r1, is different from r2 (i.e., the null hypothesis is that
r1 = r2; the alternative hypothesis is that r1 �= r2), let

C1 = 0.5 × ln[(l + r1)/(l − r1)]
C2 = 0.5 × ln[(l + r2)/(l − r2)]

Then

N = [(zα + zβ) ÷ (C1 − C2)]2 + 3.



90 Basic Ingredients

APPENDIX 6D

Sample Size for a Descriptive Study of a Continuous
Variable

TABLE 6D Sample Size for Common Values of W /S∗

Confidence Level

W /S 90% 95% 99%

0.10 1,083 1,537 2,665
0.15 482 683 1,180
0.20 271 385 664
0.25 174 246 425
0.30 121 171 295
0.35 89 126 217
0.40 68 97 166
0.50 44 62 107
0.60 31 43 74
0.70 23 32 55
0.80 17 25 42
0.90 14 19 33
1.00 11 16 27

∗ W /S is the standardized width of the confidence interval, computed as W (desired total width) divided by S (standard
deviation of the variable). To estimate the total sample size, read across from the standardized width and down from the
specified confidence level.

General Formula for Other Values
For other values of W , S, and a confidence level of (1 − α), the total number of
subjects required (N ) is

N = 4z2
αS2 ÷ W 2

(see Appendix 6A for the definition of zα).
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APPENDIX 6E

Sample Size for a Descriptive Study of a Dichotomous
Variable

TABLE 6E Sample Size for Proportions
Upper number: 90% confidence level
Middle number: 95% confidence level
Lower number: 99% confidence level

Total Width of Confidence Interval (W )

Expected Proportion (P)∗ 0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.10 98 44 — — — — —
138 61 — — — — —
239 106 — — — — —

0.15 139 62 35 22 — — —
196 87 49 31 — — —
339 151 85 54 — — —

0.20 174 77 44 28 19 14 —
246 109 61 39 27 20 —
426 189 107 68 47 35 —

0.25 204 91 51 33 23 17 13
288 128 72 46 32 24 18
499 222 125 80 55 41 31

0.30 229 102 57 37 25 19 14
323 143 81 52 36 26 20
559 249 140 89 62 46 35

0.40 261 116 65 42 29 21 16
369 164 92 59 41 30 23
639 284 160 102 71 52 40

0.50 272 121 68 44 30 22 17
384 171 96 61 43 31 24
666 296 166 107 74 54 42

∗ To estimate the sample size, read across the expected proportion (P) who have the variable of
interest and down from the desired total width (W ) of the confidence interval. The three numbers
represent the sample size required for 90%, 95%, and 99% confidence levels.

General Formula for Other Values
The general formula for other values of P , W , and a confidence level of (1 − α),
where P and W are defined above, is as follows. Let

Zα = the standard normal deviate for a two-sided α, where (1 − α) is the
confidence level (e.g., since α = 0.05 for a 95% confidence level, zα = 1.96;
therefore, for a 90% confidence level zα = 1.65, and for a 99% confidence level
zα = 2.58).

Then the total number of subjects required is:

N = 4z2
αP(l − P) ÷ W 2



92 Basic Ingredients

APPENDIX 6F

Use and Misuse of t Tests
Two-sample t tests, the primary focus of this chapter, are used when comparing

the mean values of a variable in two groups of subjects. The two groups can be
defined by a predictor variable—active drug versus placebo in a randomized trial, or
presence versus absence of a risk factor in a cohort study—or they can be defined by
an outcome variable, as in a case–control study. A two-sample t test can be unpaired,
if measurements obtained on a single occasion are being compared between two
groups, or paired if the change in measurements made at two points in time, say
before and after an intervention, are being compared between the groups. A third type
of t test, the one-sample paired t test, compares the mean change in measurements
at two points in time within a single group to zero change.

Table 6F illustrates the misuse of one-sample paired t tests in a study designed
for between-group comparisons—a randomized blinded trial of the effect of a
new sleeping pill on quality of life. In situations like this, some investigators have
performed (and published!) findings with two separate one-sample t tests—one each
in the treatment and placebo groups.

In the table, the P values designated with a dagger (†) are from one-sample
paired t-tests. The first P (0.05) shows a significant change in quality of life in the
treatment group during the study; the second P value (0.16) shows no significant
change in the control group. However, this analysis does not permit inferences about
differences between the groups, and it would be wrong to conclude that there was a
significant effect of the treatment.

The P values designated with a (*), represent the appropriate two-sample t
test results. The first two P values (0.87 and 0.64) are two-sample unpaired t tests
that show no statistically significant between-group differences in the initial or final
measurements for quality of life. The last P value (0.17) is a two-sample paired t
test; it is closer to 0.05 than the P value for the end of study values (0.64) because
the paired mean differences have smaller standard deviations. However, the improved
quality of life in the treatment group (1.3) was not significantly different from that in
the placebo group (0.9), and the correct conclusion is that the study did not find the
treatment to be effective.

TABLE 6F Correct (and Incorrect) Ways to Analyze Paired Data
Quality of Life, as Mean ± SD

Time of Measurement Treatment (n = 100) Control (n = 100) P value

Baseline 7.0 ± 4.5 7.1 ± 4.4 0.87∗
End of study 8.3 ± 4.7 8.0 ± 4.6 0.64∗
P value 0.05† 0.16†

Difference 1.3 ± 2.1 0.9 ± 2.0 0.17∗
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7 Designing a Cohort Study

Steven R. Cummings, Thomas B. Newman,
and Stephen B. Hulley

Cohort studies involve following groups of subjects over time. There are two
primary purposes: descriptive, typically to describe the occurrence of certain out-
comes over time; and analytic, to analyze associations between predictors and
those outcomes. This chapter begins with a description of the classic prospec-
tive cohort study, in which the investigator defines the sample and measures
predictor variables before undertaking a follow-up period to observe outcomes.
We then review retrospective cohort studies, which save time and money because
the follow-up period and outcomes have already occurred when the study takes
place, and include highly efficient nested case–control and case–cohort options. The
chapter concludes by describing multiple-cohort studies and reviewing the methods
for optimizing a key ingredient for all cohort designs, cohort retention during
follow-up.

PROSPECTIVE COHORT STUDIES

Structure
Cohort was the Roman term for a group of soldiers that marched together, and in
clinical research a cohort is a group of subjects followed over time. In a prospective
cohort study, the investigator begins by assembling a sample of subjects (Fig. 7.1).
She measures characteristics in each subject that might predict the subsequent
outcomes, and follows these subjects with periodic measurements of the outcomes of
interest.
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Risk factor
present

Population

Sample

Risk factor
absent

THE PRESENT THE FUTURE
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No
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Disease

FIGURE 7.1. In a prospective cohort study, the investigator (a) selects a sample
from the population (the dotted line signifies its large and undefined size)
(b) measures the predictor variables (in this case whether a dichotomous risk
factor is present [shaded]), and (c) measures the outcome variables during
follow-up (in this case whether a disease occurs [outlined in bold]).

Example 7.1 Prospective Cohort Study

The Nurses’ Health Study examines incidence and risk factors for common diseases
in women. The basic steps in performing the study were to:

1. Assemble the Cohort. In 1976, the investigators obtained lists of registered
nurses aged 25 to 42 in the 11 most populous states and mailed them an invitation
to participate in the study; those who agreed became the cohort.

2. Measure Predictor Variables and Potential Confounders. They mailed
a questionnaire about weight, exercise and other potential risk factors and
obtained completed questionnaires from 121,700 nurses. They send questionnaires
periodically to ask about additional risk factors and update the status of some risk
factors that had been measured previously.

3. Follow-up the Cohort and Measure Outcomes. The periodic questionnaires
also included questions about the occurrence of a variety of disease outcomes.

The prospective approach allowed investigators to make measurements at baseline,
and collect data on subsequent outcomes. The large size of the cohort and long period
of follow-up have provided substantial statistical power to study risk factors for
cancers and other diseases.

For example, the investigators examined the hypothesis that gaining weight
increases a woman’s risk of breast cancer after menopause (1). The women reported
their weight at age 18 in an early questionnaire, and their current weights in
later questionnaires. The investigators succeeded in following 95% of the women
and 1,517 cases of breast cancer were confirmed during the next 12 years. Heavier
women had a higher risk of breast cancer after menopause, and those who gained
more than 20 kg since age 18 had a twofold increased risk of developing breast cancer
(relative risk = 2.0; 95% confidence interval, 1.4 to 2.8). Adjusting for potential
confounding factors did not change the result.
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Strengths and Weaknesses
The prospective cohort design is a powerful strategy for assessing incidence (the
number of new cases of a condition in a specified time interval), and it is helpful in
investigating the potential causes of the condition. Measuring levels of the predictor
before the outcome occurs establishes the time sequence of the variables and prevents
the predictor measurements from being influenced by knowledge of the outcome.
The prospective approach also allows the investigator to measure variables more
completely and accurately than is possible retrospectively. This is important for
predictors such as dietary habits that are difficult for a subject to remember accurately.
When fatal diseases are studied retrospectively, predictor variables about the decedent
can only be reconstructed from indirect sources such as medical records or friends
and relatives.

All cohort studies share the general disadvantage of observational studies (relative
to clinical trials) that causal inference is challenging and interpretation often muddied
by the influences of confounding variables (Chapter 9). A particular weakness of
the prospective design is its expense and inefficiency for studying rare outcomes.
Even diseases we think of as relatively common, such as breast cancer, happen so
infrequently in any given year that large numbers of people must be followed for
long periods of time to observe enough outcomes to produce meaningful results.
Cohort designs become more efficient as the outcomes become more common
and immediate; a prospective study of risk factors for progression after treatment
of patients with breast cancer will be smaller and less time consuming than a
prospective study of risk factors for the occurrence of breast cancer in a healthy
population.

RETROSPECTIVE COHORT STUDIES

Structure
The design of a retrospective cohort study (Fig. 7.2) differs from that of a prospective
one in that the assembly of the cohort, baseline measurements, and follow-up have

Risk factor
present

Risk factor
absent

No
disease

No
disease

Disease

Disease

Population

Sample

THE PAST THE PRESENT

FIGURE 7.2. In a retrospective cohort study, the investigator (a) identifies a
cohort that has been assembled in the past, (b) collects data on predictor
variables (measured in the past), and (c) collects data on outcome variables
(measured in the present).
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all happened in the past. This type of study is only possible if adequate data about the
risk factors and outcomes are available on a cohort of subjects that has been assembled
for other purposes.

Example 7.2 Retrospective Cohort Study

To describe the natural history of thoracic aortic aneurysms and risk factors for
rupture of these aneurysms, Clouse et al. analyzed data from the medical records
of 133 patients who had aneurysms (2). The basic steps in performing the study
were to

1. Identify a Suitable Cohort. The investigators used the residents of Olm-
sted County, Minnesota. They searched a database of diagnoses made between
1980 and 1995 and found 133 residents who had a diagnosis of aortic
aneurysm.

2. Collect Data about Predictor Variables. They reviewed patients’ records to
collect gender, age, size of aneurysm, and risk factors for cardiovascular disease
at the time of diagnosis.

3. Collect Data about Subsequent Outcomes. They collected data from the
medical records of the 133 patients to determine whether the aneurysm ruptured
or was surgically repaired.

The investigators found that the 5-year risk of rupture was 20% and that women
were 6.8 times more likely to suffer a rupture than men (95% confidence interval,
2.3 to 20). They also found that 31% of aneurysms with diameters of more than 6 cm
ruptured, compared with none with diameters of less than 4 cm.

Strengths and Weaknesses
Retrospective cohort studies have many of the same strengths as prospective cohort
studies, and they have the advantage of being much less costly and time consuming.
The subjects are already assembled, baseline measurements have already been made,
and the follow-up period has already taken place. The main disadvantages are the
limited control the investigator has over the approach to sampling the population,
and over the nature and the quality of the predictor variables. The existing data may
be incomplete, inaccurate, or measured in ways that are not ideal for answering the
research question.

NESTED CASE–CONTROL AND CASE–COHORT
STUDIES1

Structure
A nested case–control design has a case–control study ‘‘nested’’ within a cohort
study (Fig. 7.3). It is an excellent design for predictor variables that are expen-
sive to measure and that can be assessed at the end of the study on subjects who

1These terms are used inconsistently in the literature; the definitions provided here are the simplest. For a detailed
discussion, see Szklo and Nieto (3).
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FIGURE 7.3. In a nested case–control study, the investigator (a) identifies a cohort with banked
specimens, images, or information; (b) identifies those participants who developed the outcome
during follow-up (the cases); (c) selects a sample from the rest of the cohort (the controls); and
(d) measures predictor variables in cases and controls.

develop the outcome during the study (the cases), and on a sample of those who
do not (the controls). The investigator begins with a suitable cohort with enough
cases by the end of follow-up to provide adequate power to answer the research
question. At the end of the study she applies criteria that define the outcome of
interest to identify all those who have developed the outcome (the cases). Next,
she selects a random sample of the subjects who have not developed the out-
come (the controls); she can increase power by selecting two or three controls
for each case, and by matching on constitutional determinants of outcome such
as age and sex (see Chapter 9 for the pros and cons of matching). She then re-
trieves specimens, images or records that were collected before the outcomes had
occurred, measures the predictor variables, and compares the levels in cases and
controls.

The nested case–cohort approach is the same design except that the controls
are a random sample of all the members of the cohort regardless of outcomes.
This means that there will be some cases among those sampled for the comparison
group, who will also appear among the cases and be analyzed as such (removing
them from the cohort sample for purposes of analysis is a negligible problem
provided that the outcome is uncommon). This approach has the advantage that
the controls represent the cohort in general, and therefore provide a basis for
estimating incidence and prevalence in the population from which it was drawn.
More important, it means that this cohort sample can be used as the comparison
group for more than one type of outcome provided that it is not too common. In
Example 7.3, for instance, a single set of sex hormone levels from the baseline exam
measured in a random sample of the cohort could be compared with levels from
baseline in cases with breast cancer in one analysis, and in cases with fractures in
another.
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Example 7.3 Nested Case–Control Design

Cauley et al. carried out a nested case–control study of whether higher levels of sex
hormones were risk factors for breast cancer, (4). The basic steps in this study were to

1. Identify a Cohort with Banked Samples. The investigators used serum and
data from the Study of Osteoporotic Fractures, a prospective cohort of 9,704
women age 65 and older.

2. Identify Cases at the End of Follow-up. Based on responses to follow-up
questionnaires and review of death certificates, the investigators identified 97
subjects with a first occurrence of breast cancer during 3.2 years of follow-up.

3. Select Controls. The investigators selected a random sample of 244 women in
the cohort who did not develop breast cancer during that follow-up period.

4. Measure Predictors on Baseline Samples from Cases and Controls. Levels
of estradiol and testosterone were measured in serum specimens from the baseline
examination that had been stored at −190◦C by laboratory staff who were blinded
to case–control status.

Women who had high levels of either estradiol or testosterone had a threefold
increase in the risk of a subsequent diagnosis of breast cancer compared with women
who had very low levels of these hormones.

Strengths and Weaknesses
Nested case–control and case–cohort studies are especially useful for costly mea-
surements on serum, electronic images, hospital charts, etc. that have been archived
at the beginning of the study and preserved for later analysis. In addition to the cost
savings of not making the measurements on the entire cohort, the design allows the
investigator to introduce novel measurements that were not available at the outset
of the study. The design preserves all the advantages of cohort studies that result
from collecting predictor variables before the outcomes have happened, and it avoids
the potential biases of conventional case–control studies that draw cases and controls
from different populations and cannot make measurements on cases and controls who
have died.

The chief disadvantage of this design is that many research questions and
circumstances are not amenable to the strategy of storing materials for later analysis
on a sample of the study subjects. Also, when data are available for the entire cohort
at no additional cost, nothing is gained by studying only a sample of controls—the
whole cohort should be used.

These are such great designs that an investigator planning a prospective study
should always consider preserving biologic samples and storing images or records that
involve expensive measurements for subsequent nested case–control or case–cohort
analyses. She should ensure that the conditions of storage will preserve substances of
interest for many years, and consider setting aside specimens for periodic measure-
ments to confirm that the components have remained stable. She may also find it
useful to collect new samples or information during the follow-up period that can be
used in the case–control comparisons.



Chapter 7 ■ Designing a Cohort Study 103

MULTIPLE-COHORT STUDIES AND EXTERNAL
CONTROLS

Structure
Multiple-cohort studies begin with two or more separate samples of subjects: typically,
one group with exposure to a potential risk factor and one or more other groups with
no exposure or a lower level of exposure (Fig. 7.4). After defining suitable cohorts
with different levels of exposure to the predictor of interest, the investigator measures
predictor variables, follows up the cohorts, and assesses outcomes as in any other type
of cohort study.

The use of two different samples of subjects in a double-cohort design should
not be confused with the use of two samples in the case–control design (Chapter 8).
In a double-cohort study the two groups of subjects are chosen based on the level of
a predictor variable, whereas in a case–control study the two groups are chosen based
on the presence or absence of the outcome.

Population #1
(risk factor
present)

Population #2
(risk factor

absent)

THE FUTURETHE PRESENT

Disease
No

disease
Cohort with risk
factor present

Disease
No

disease
Cohort with risk
factor absent

FIGURE 7.4. In a prospective double-cohort study, the investigator (a) selects cohorts from two
populations with different levels of the predictor, and (b) measures outcome variables during follow-up.
(Double-cohort studies can also be conducted retrospectively.)
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Example 7.4 Multiple-Cohort Design

To determine whether significant neonatal jaundice or dehydration has any sig-
nificant adverse effects on neurodevelopment, investigators from UCSF and the
Northern California Kaiser Permanente Medical Care Program (5) undertook a
triple- cohort study. The basic steps in performing the study were to

1. Identify Cohorts with Different Exposures. The investigators used electronic
databases to identify term and near-term newborns who (1) had a total serum
bilirubin level of ≥ 25 mg/dL, or (2) were readmitted for dehydration with a
serum sodium of ≥ 150 mEq/L or weight loss of ≥ 12% from birth, or (3) were
randomly selected from the birth cohort.

2. Determine Outcomes: The investigators used electronic databases to search for
diagnoses of neurological disorders and did full neurodevelopmental examina-
tions at the age of 5 for consenting participants.

With few exceptions, neither hyperbilirubinemia nor dehydration was associated
with adverse outcomes.

In a variation on the multiple-cohort design, the outcome rate in a cohort can be
compared with outcome rates in a census or registry from a different population. For
example, in a classic study of whether uranium miners had an increased incidence of
lung cancer, Wagoner et al. (6) compared the incidence of respiratory cancer in 3,415
uranium miners with that of white men who lived in the same states. The increased
incidence of lung cancer observed in the miners helped establish occupational exposure
to ionizing radiation as an important cause of lung cancer.

Strengths and Weaknesses
The multiple-cohort design may be the only feasible approach for studying rare
exposures, and exposures to potential occupational and environmental hazards. Using
data from a census or registry as the external control group has the additional
advantage of being population based and economical. Otherwise, the strengths of this
design are similar to those of other cohort studies.

The problem of confounding is accentuated in a multiple-cohort study because
the cohorts are assembled from different populations that can differ in important ways
(besides exposure to the predictor variable) that influence the outcomes. Although
some of these differences, such as age and race, can be matched or used to adjust the
findings statistically, other characteristics may not be measurable and create problems
in the interpretation of observed associations.

OTHER COHORT STUDY ISSUES

The hallmark of a cohort study is the need to define a group of subjects at the beginning
of a period of follow-up. The subjects should be appropriate to the research question
and available for follow-up. They should sufficiently resemble the population to which
the results will be generalized. The number of subjects should provide adequate power.

The quality of the study will depend on the precision and accuracy of the
measurements of predictor and outcome variables. The ability to draw inferences
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about cause and effect will also depend on the degree to which the investigator has
identified and measured all potential confounders and sources of effect modification
(Chapter 9). Predictor variables may change during the study; whether and how
frequently measurements should be repeated depends on cost, how much the variable
is likely to change, and the importance to the research question of observing these
changes. Outcomes should be assessed using standardized criteria and blindly—
without knowing the values of the predictor variables.

Follow-up of the entire cohort is important, and prospective studies should
take a number of steps to achieve this goal. Loss of subjects can be minimized in
several ways (Table 7.1). Those who plan to move out of reach during the study or
who will be difficult to follow for other reasons should be excluded at the outset. The
investigator should collect information early on that she can use to find subjects if they
move or die. This includes the address, telephone number and e-mail address of the
subject, personal physician and one or two close friends or relatives who do not live in
the same house. It is useful to obtain the social security number and (for those over

TABLE 7.1 Strategies for Minimizing Losses during Follow-up

During enrollment

1. Exclude those likely to be lost
a. Planning to move
b. Uncertainty about willingness to return
c. Ill health or fatal disease unrelated to research question

2. Obtain information to allow future tracking
a. Address, telephone number(s), and e-mail address of subject
b. Social Security/Medicare numbers
c. Name, address, telephone number, and e-mail addresses for one or two close

friends or relatives who do not live with the subject
d. Name, e-mail, address, and telephone number of physician(s)

During follow-up

1. Periodic contact with subjects to collect information, provide results, express care, and
so on.
a. By telephone: may require calls during weekends and evenings
b. By mail: repeated mailings by e-mail or with stamped, self-addressed return cards
c. Other: newsletters, token gifts

2. For those who are not reached by phone or mail:∗
a. Contact friends, relatives, or physicians
b. Request forwarding addresses from postal service
c. Seek address through other public sources, such as telephone directories and the

Internet, and ultimately a credit bureau search.
d. For subjects receiving Medicare, collect data about hospital discharges from Social

Security Administration
e. Determine vital status from state health department or National Death Registry

At all times

1. Treat study subjects with appreciation, kindness and respect, helping them to
understand the research question so they will want to join as partners in making the
study successful

∗ This assumes that participants in the study have given informed consent to collect the tracking information
and for follow-up contact.
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65) the medicare number. This information will allow the investigator to determine
the vital status of subjects who are lost to follow-up using the National Death Index
and to obtain hospital discharge information from the Social Security Administration
for subjects who receive Medicare. Periodic contact with the subjects once or twice
a year helps in keeping track of them, and may improve the timeliness and accuracy
of recording the outcomes of interest. Finding subjects for follow-up assessments
sometimes requires persistent and repeated efforts by mail, e-mail, telephone, house
calls, or professional tracking.

SUMMARY

1. In cohort studies, subjects are followed over time to describe the incidence or
natural history of a condition and to analyze predictors (risk factors) for various
outcomes. Measuring the predictor before the outcome occurs establishes the
sequence of events and helps control bias in that measurement.

2. Prospective cohort studies begin at the outset of follow-up and may require
large numbers of subjects followed for long periods of time. This disadvantage
can sometimes be overcome by identifying a retrospective cohort in which
measurements of predictor variables have already occurred.

3. Another efficient variant is the nested case–control design. A bank of specimens,
images, or records is collected at baseline; measurements are made on the stored
materials for all subjects who have developed an outcome, and for a subset of those
who have not. In the nested case–cohort strategy, a single random sample of the
cohort can serve as the comparison group for several case–control studies.

4. The multiple-cohort design, which compares the incidence of outcomes in cohorts
that differ in level of a predictor variable, is useful for studying the effects of rare
and occupational exposures.

5. Inferences about cause and effect are strengthened by measuring all potential
confounding variables at baseline. Bias in the assessment of outcomes is prevented
by standardizing the measurements and blinding those assessing the outcome to
the predictor variable values.

6. The strengths of a cohort design can be undermined by incomplete follow-up
of subjects. Losses can be minimized by excluding subjects who may not be
available for follow-up, collecting baseline information that facilitates tracking,
staying in touch with all subjects regularly, and involving subjects as partners in
the research.
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8 Designing Cross-sectional

and Case–Control Studies

Thomas B. Newman, Warren S. Browner, Steven R. Cummings,
and Stephen B. Hulley

Chapter 7 dealt with cohort studies, in which the sequence of the measurements is the
same as the chronology of cause and effect: first the predictor, then (after an interval
of follow-up) the outcome. In this chapter we turn to two kinds of observational
studies that are not guided by this logical time sequence.

In a cross-sectional study, the investigator makes all of her measurements on a
single occasion or within a short period of time. She draws a sample from the popula-
tion and looks at distributions of variables within that sample, sometimes designating
predictor and outcome variables based on biologic plausibility and information from
other sources. In a case–control study, the investigator works backward. She begins
by choosing one sample from a population of patients with the outcome (the cases)
and another from a population without it (the controls); then she compares the
distribution levels of the predictor variables in the two samples to see which ones are
associated with and might cause the outcome.

CROSS-SECTIONAL STUDIES

Structure
The structure of a cross-sectional study is similar to that of a cohort study except that
all the measurements are made at about the same time, with no follow-up period
(Fig. 8.1). Cross-sectional designs are very well suited to the goal of describing
variables and their distribution patterns. In the National Health and Nutrition
Examination Survey (NHANES), for example, a sample designed to represent the
US population is interviewed and examined. NHANES surveys have been carried out
periodically, and an NHANES follow-up (cohort) study has been added to the original
cross-sectional design. Each cross-sectional study is a major source of information
about the health and habits of the US population in the year it is carried out, providing
estimates of such things as the prevalence of smoking in various demographic groups.
All NHANES datasets are available for public use.

109
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FIGURE 8.1. In a cross-sectional study, the
investigator (a) selects a sample from the population
and (b) measures predictor and outcome variables
(e.g., presence or absence of a risk factor and disease).

Cross-sectional studies can also be used for examining associations, although the
choice of which variables to label as predictors and which as outcomes depends on
the cause-and-effect hypotheses of the investigator rather than on the study design.
This choice is easy for constitutional factors such as age and race; these cannot be
altered by other variables and therefore are predictors. For other variables, however,
the choice can go either way. For example, a cross-sectional finding in NHANES III
is an association between childhood obesity and hours spent watching television (1).
Whether to label obesity or TV-watching as the outcome depends on the question of
interest to the investigator.

Unlike cohort studies, which have a longitudinal time dimension and can be used
to estimate incidence (the proportion who get a disease or condition over time),
cross-sectional studies can generally provide information only about prevalence,
the proportion who have a disease or condition at one point in time (Table 8.1).
Prevalence is useful to health planners who want to know how many people have
certain diseases so that they can allocate enough resources to care for them, and it is
useful to the clinician who must estimate the likelihood that the patient sitting in her
office has a particular disease. When analyzing cross-sectional studies, the prevalence

TABLE 8.1 Statistics for Expressing Disease Frequency in Observational Studies

Type of Study Statistic Definition

Cohort Incidence rate
Number of people who get a disease or condition

Number of people at risk × Time period at risk

Cross-sectional Prevalence
Number of people who have a disease or condition

Number of people at risk

Number of people who get (cohort) or report ever

Both Cumulative
incidence

having acquired (cross-sectional) a disease or condition
Number of people at risk
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of the outcome is compared in those with and without an exposure, giving the relative
prevalence of the outcome, the cross-sectional equivalent of relative risk. An example
calculation of prevalence and relative prevalence is provided in Appendix 8A.

Sometimes cross-sectional studies describe the prevalence of ever having done
something or ever having had a disease or condition. In that case, the prevalence is
the same as the cumulative incidence, and it is important to make sure that follow-up
time is the same in those exposed and unexposed. This is illustrated in Example 8.1,
in which the prevalence of ever having tried smoking was studied in a cross-sectional
study of children with differing levels of exposure to movies in which the actors
smoke. Of course, children who had seen more movies were also older, and therefore
had longer to try smoking, so it was very important to adjust for age in analyses
(multivariate adjustment is discussed in Chapter 9).

Example 8.1 Cross-sectional Study

To determine whether exposure to movies in which the actors smoke is associated with
smoking initiation, Sargent et al. (2):

1. Selected the Sample: They did a random-digit-dial survey of 6,522 children
aged 10 to 14 years.

2. Measured the Variables: They quantified smoking in 532 popular movies and
for each subject asked which of a randomly selected subset of 50 movies they had
seen. Subjects were also asked about a variety of covariates such as age, race,
gender, parental smoking and education, sensation-seeking (e.g., ‘‘I like to do
dangerous things’’) and self-esteem (e.g., ‘‘I wish I were someone else.’’) The
outcome variable was whether the child had ever tried smoking a cigarette.

The prevalence of ever having tried smoking varied from 2% in the lowest quartile
of movie smoking exposure to 22% in the highest quartile. After adjusting for age and
other confounders, odds ratios were much lower but still significant: 1.7, 1.8, and
2.6 for the second, third, and highest quartiles of movie smoking exposure, compared
with the lowest quartile. Based on the adjusted odds ratios, the authors estimated
that 38% of smoking initiation was attributable to exposure to movies in which the
actors smoke.

Strengths and Weaknesses of Cross-sectional Studies
A major strength of cross-sectional studies over cohort studies and clinical trials is that
there is no waiting for the outcome to occur. This makes them fast and inexpensive,
and it means that there is no loss to follow-up. A cross-sectional study can be included
as the first step in a cohort study or experiment at little or no added cost. The results
define the demographic and clinical characteristics of the study group at baseline and
can sometimes reveal cross-sectional associations of interest.

A weakness of cross-sectional studies is the difficulty of establishing causal
relationships from observational data collected in a cross-sectional time frame. Cross-
sectional studies are also impractical for the study of rare diseases if the design
involves collecting data on a sample of individuals from the general population. A
cross-sectional study of stomach cancer in a general population of 45- to 59-year-old
men, for example, would need about 10,000 subjects to find just one case.
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Cross-sectional studies can be done on rare diseases if the sample is drawn from
a population of diseased patients rather than from the general population. A case
series of this sort is better suited to describing the characteristics of the disease than
to analyzing differences between these patients and healthy people, although informal
comparisons with prior experience can sometimes identify very strong risk factors. Of
the first 1,000 patients with AIDS, for example, 727 were homosexual or bisexual
males and 236 were injection drug users (3). It did not require a formal control group
to conclude that these groups were at increased risk. Furthermore, within a sample
of persons with a disease there may be associations of interest (e.g., the higher risk
of Kaposi’s sarcoma among patients with AIDS who were homosexual than among
those who were injection drug users).

When cross-sectional studies measure only prevalence and not cumulative inci-
dence it limits the information they can produce on prognosis, natural history, and
disease causation. To show causation, investigators need to demonstrate that the
incidence of disease differs in those exposed to a risk factor. Because prevalence is
the product of disease incidence and disease duration, a factor that is associated with
higher prevalence of disease may be a cause of the disease but could also be associated
with prolonged duration of the disease. For example, the prevalence of severe depres-
sion is affected not just by its incidence, but by the duration of episodes, the suicide
rate and the responsiveness to medication of those affected. Therefore, cross-sectional
studies may show increased relative prevalence either because the condition occurs
more frequently in those with the exposure, or because the condition lasts longer in
those with the exposure.

Serial Surveys
A series of cross-sectional studies of a single population observed at several points
in time is sometimes used to draw inferences about changing patterns over time.
For example, Zito et al. (4), using annual cross-sectional surveys, reported that
the prevalence of prescription psychotropic drug use among youth (<20 years old)
increased more than threefold between 1987 and 1996 in a mid-Atlantic Medicaid
population. This is not a cohort design because it does not follow a single group of
people over time; there are changes in the population over time due to births, deaths,
aging, migration, and eligibility changes.

CASE–CONTROL STUDIES

Structure
To investigate the causes of all but the most common diseases, both cohort and cross-
sectional studies of general population samples are expensive: each would require
thousands of subjects to identify risk factors for a rare disease like stomach cancer.
A case series of patients with the disease can identify an obvious risk factor (such
as, for AIDS, injection drug use), using prior knowledge of the prevalence of the
risk factor in the general population. For most risk factors, however, it is necessary
to assemble a reference group, so that the prevalence of the risk factor in subjects
with the disease (cases) can be compared with the prevalence in subjects without the
disease (controls).

The retrospective structure of a case–control study is shown in Fig. 8.2. The
study identifies one group of subjects with the disease and another without it, then
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FIGURE 8.2. In a case–control study, the investigator (a) selects a sample from a population
with the disease (cases), (b) selects a sample from a population at risk that is free of the disease
(controls), and (c) measures predictor variables.

looks backward to find differences in predictor variables that may explain why the
cases got the disease and the controls did not.

Case–control studies began as epidemiologic studies to try to identify risk factors
for diseases. Therefore the outcome traditionally used to determine case–control status
has been the presence or absence of a disease. For this reason and because it makes
the discussion easier to follow, we generally refer to ‘‘cases’’ as those with the disease.
However, the case–control design can also be used to look at other outcomes, such
as disability among those who already have a disease. In addition, when undesired
outcomes are the rule rather than the exception, the cases in a case–control study may
be the rare patients who have had a good outcome, such as recovery from a usually
fatal disease.

Case–control studies are the ‘‘house red’’ on the research design wine list:
more modest and a little riskier than the other selections but much less expensive
and sometimes surprisingly good. The design of a case–control study is challenging
because of the increased opportunities for bias, but there are many examples of
well-designed case–control studies that have yielded important results. These include
the links between maternal diethylstilbestrol use and vaginal cancer in daughters (a
classic study that provided a definitive conclusion based on just seven cases!) (5), and
prone sleeping position to prevent sudden infant death syndrome (6), a simple result
that has saved thousands of lives.
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Example 8.2 Case–Control Study

Because intramuscular (IM) vitamin K is given routinely to newborns in the United
States, a pair of studies reporting a doubling in the risk of childhood cancer among
those who had received IM vitamin K caused quite a stir (7,8). To investigate this
association further, German investigators (9)

1. Selected the Sample of Cases. 107 children with leukemia from the German
Childhood Cancer Registry.

2. Selected the Sample of Controls. 107 children matched by sex and date of
birth and randomly selected from children living in the same town as the case at
the time of diagnosis (from local government residential registration records).

3. Measured the Predictor Variable. Reviewed medical records to determine
which cases and controls had received IM vitamin K in the newborn period.

The authors found 69 of 107 cases (64%) and 63 of 107 controls (59%) had been
exposed to IM vitamin K, for an odds ratio of 1.2 (95% confidence interval [CI],
0.7 to 2.3). (See Appendix 8A for the calculation.) Therefore, this study did not
confirm the existence of an association between the receipt of IM vitamin K as a
newborn and subsequent childhood leukemia. The point estimate and upper limit of
the 95% CI leave open the possibility of a clinically important increase in leukemia
in the population from which the samples were drawn, but several other studies and
an analysis using an additional control group in the example study also failed to
confirm the association (10,11).

Case–control studies cannot yield estimates of the incidence or prevalence of a
disease because the proportion of study subjects who have the disease is determined
by how many cases and how many controls the investigator chooses to sample, rather
than by their proportions in the population. What case–control studies do provide
is descriptive information on the characteristics of the cases and, more important, an
estimate of the strength of the association between each predictor variable and the
presence or absence of the disease. These estimates are in the form of the odds ratio,
which approximates the relative risk if the prevalence of the disease is relatively low
(about 10% or less) (Appendix 8B).

Strengths of Case–Control Studies
Efficiency for Rare Outcomes. One of the major strengths of case–control studies is
their rapid, high yield of information from relatively few subjects. Consider a study
of the effect of circumcision on subsequent carcinoma of the penis. This cancer is
very rare in circumcised men but is also rare in uncircumcised men: their lifetime
cumulative incidence is about 0.16% (12). To do a cohort study with a reasonable
chance (80%) of detecting even a very strong risk factor (say a relative risk of 50)
would require more than 6,000 men, assuming that roughly equal proportions were
circumcised and uncircumcised. A randomized clinical trial of circumcision at birth
would require the same sample size, but the cases would occur at a median of 67
years after entry into the study—it would take three generations of epidemiologists
to follow the subjects!
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Now consider a case–control study of the same question. For the same chance
of detecting the same relative risk, only 16 cases and 16 controls (and not much
investigator time) would be required. For diseases that are either rare or have long
latent periods between exposure and disease, case–control studies are far more efficient
than the other designs. In fact, they are often the only feasible option.

Usefulness for Generating Hypotheses. The retrospective approach of case–control
studies, and their ability to examine a large number of predictor variables makes them
useful for generating hypotheses about the causes of a new outbreak of disease. For
example, a case–control study of an epidemic of acute renal failure in Haitian children
found an odds ratio of 53 for ingestion of locally manufactured acetaminophen
syrup. Further investigation revealed that the renal failure was due to poisoning by
diethylene glycol, which was found to contaminate the glycerine solution used to
make the acetaminophen syrup (13).

Weaknesses of Case–Control Studies
Case–control studies have great strengths, but they also have major limitations. The
information available in case–control studies is limited: unless the population and
time period from which the cases arose are known, there is no direct way to estimate
the incidence or prevalence of the disease, nor the attributable or excess risk. There is
also the problem that only one outcome can be studied (the presence or absence of
the disease that was the criterion for drawing the two samples), whereas cohort and
cross-sectional studies (and clinical trials) can study any number of outcome variables.
But the biggest weakness of case–control studies is their susceptibility to bias. This
bias comes chiefly from two sources: the separate sampling of the cases and controls,
and the retrospective measurement of the predictor variables. These two problems
and the strategies for dealing with them are the topic of the next two sections.

Sampling Bias and How to Control It
The sampling in a case–control study begins with the cases. Ideally, the sample of
cases would be a complete or a random sample of everyone who develops the disease
under study. An immediate problem comes up, however. How do we know who
has developed the disease and who has not? In cross-sectional and cohort studies
the disease is systematically sought in all the study participants, but in case–control
studies the cases must be sampled from patients in whom the disease has already been
diagnosed and who are available for study. This sample may not be representative of all
patients who develop the disease because those who are undiagnosed, misdiagnosed,
unavailable for study or dead are less likely to be included (Fig. 8.3).

In general, sampling bias is important when the sample of cases is unrepresentative
with respect to the risk factor being studied. Diseases that almost always require
hospitalization and are relatively easy to diagnose, such as hip fracture and traumatic
amputations, can be safely sampled from diagnosed and accessible cases. On the other
hand, conditions that may not come to medical attention are not well suited to
retrospective studies because of the selection that precedes diagnosis. For example,
women seen in a gynecologic clinic with first-trimester spontaneous abortions would
probably differ from the entire population of women experiencing spontaneous
abortions because those with greater access to gynecologic care or with complications
would be overrepresented. If a predictor variable of interest is associated with
gynecologic care in the population (such as past use of an intrauterine device [IUD]),
sampling cases from the clinic could be an important source of bias. If, on the other
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FIGURE 8.3. Some reasons that the cases in a case–control study may
not be representative of all cases of the disease.

hand, a predictor is unrelated to gynecologic care (such as blood type) there would
be less likelihood of a clinic-based sample being unrepresentative.

Although it is important to think about these issues, in actual practice the selection
of cases is often straightforward because the accessible sources of subjects are limited.
The sample of cases may not be entirely representative, but it may be all that the
investigator has to work with. The more difficult decisions faced by an investigator de-
signing a case–control study then relates to the more open-ended task of selecting the
controls. The general goal is to sample controls from a population at risk for the disease
that is otherwise similar to the cases. Four strategies for sampling controls follow:

• Hospital- or clinic-based controls. One strategy to compensate for the possible
selection bias caused by obtaining cases from a hospital or clinic is to select controls
from the same facilities. For example, in a study of past use of an IUD as a risk
factor for spontaneous abortion, controls could be sampled from a population of
women seeking care for vaginitis at the same gynecologic clinic. Compared with
a random sample of women from the same area, these controls would presumably
better represent the population of women who, had they developed a spontaneous
abortion, would have come to the clinic and become a case.

However, selection of an unrepresentative sample of controls to compensate for
an unrepresentative sample of cases can be problematic. If the risk factor of interest
also causes diseases for which the controls seek care, the prevalence of the risk factor
in the control group will be falsely high, biasing the study results toward the null.
If, for example, many women in the control group had vaginitis and use of an IUD
increased the risk of vaginitis, there would be an excess of IUD users among the
controls, masking a possible real association between IUD use and spontaneous
abortion.

Because hospital-based and clinic-based control subjects are usually unwell and
because their diseases may be associated with the risk factors being studied, the
use of hospital- or clinic-based controls can produce misleading findings. For this
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reason, the added convenience of hospital- or clinic-based controls is not often
worth the possible threat to the validity of the study.

• Matching. Matching is a simple method of ensuring that cases and controls are
comparable with respect to major factors that are related to the disease but not
of interest to the investigator. So many risk factors and diseases are related to age
and sex, for example, that the study results may be unconvincing unless the cases
and controls are comparable with regard to these two variables. One approach to
avoiding this problem is to choose controls that match the cases on these constitu-
tional predictor variables. For example, in a study that matched on sex and age (say,
within 2 years), for a 44-year-old male case the investigators would choose a male
control between the ages of 42 and 46 years. Alternatively, the investigators can try
to make sure that the overall proportions of men in each age-group are the same
in the cases and controls (a process known as frequency matching). Matching does
have its adverse consequences, however, particularly when modifiable predictors
such as income or serum cholesterol level are matched. The reasons for this and the
alternatives to matching are discussed in Chapter 9.

• Using a population-based sample of cases. Population-based case–control studies
are now possible for many diseases, because of a rapid increase in the use of disease
registries, both in geographically defined populations and within health maintenance
organizations. Because cases obtained from such registries are generally representa-
tive of the general population of patients in the area with the disease, the choice of a
control group is simplified: it should be a representative sample from the population
covered by the registry. In Example 8.2, all residents of the town were registered
with the local government, making selection of such a sample straightforward.

When registries are available, population-based case–control studies are clearly
the most desirable. As the disease registry approaches completeness and the popu-
lation it covers approaches stability (no migration in or out), the population-based
case–control study approaches a case–control study that is nested within a cohort
study or clinical trial (Chapter 7). When information on the cases and controls
can come from previously recorded sources, (thereby not requiring consent of the
subject and the selection bias likely to accompany such consent) this design has
the potential for eliminating sampling bias, because both cases and controls are
selected from the same population. When designing the sampling approach for a
case–control study, the nested case–control design is useful to keep in mind as the
model to emulate.

• Using two or more control groups. Because selection of a control group can be
so tricky, particularly when the cases are not a representative sample of those with
disease, it is sometimes advisable to use two or more control groups selected in
different ways. The Public Health Service study of Reye’s syndrome and medica-
tions (14), for example, used four types of controls: emergency room controls (seen
in the same emergency room as the case), inpatient controls (admitted to the same
hospital as the case), school controls (attending the same school or day care center
as the case), and community controls (identified by random-digit dialing). The
odds ratios for salicylate use in cases compared with each of these control groups
(in the order listed) were 39, 66, 33, and 44, and each was statistically significant.
The consistent finding of a strong association using control groups that would have
a variety of sampling biases makes a convincing case for the inference that there is
a real association in the population.

Unfortunately, many causal factors have odds ratios that are much closer to
unity, and the biases associated with different strategies for selecting controls can
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endanger causal inference. What happens if the control groups give conflicting
results? This is actually helpful, revealing inherent fragility to the case–control
method for the research question at hand. If possible, the investigator should seek
additional information to try to determine the magnitude of potential biases from
each of the control groups. In any case, it is better to have inconsistent results and
conclude that the answer is not known than to have just one control group and
draw the wrong conclusion.

Differential Measurement Bias and How to Control It
The second particular problem of case–control studies is bias due to measurement
error caused by the retrospective approach to measuring the predictor variables,
particularly when it occurs to a different extent in cases than in controls. Case–control
studies of birth defects, for example, are susceptible to recall bias: parents of babies
with birth defects may be more likely to recall drug exposures than parents of normal
babies, because they will already have been worrying about what caused the defect.
Recall bias cannot occur in a cohort study because the parents are asked about
exposures before the baby is born.

In addition to the strategies set out in Chapter 4 for controlling biased mea-
surements (standardizing the operational definitions of variables, choosing objective
approaches, supplementing key variables with data from several sources, etc.), there are
two specific strategies for avoiding bias in measuring risk factors in case–control studies:

• Use data recorded before the outcome occurred. It may be possible, for example,
to examine prenatal records in a case–control study of IM vitamin K as a risk
factor for cancer. This excellent strategy is limited to the extent that recorded
information about the risk factor of interest is available and of satisfactory reliability.
For example, information about vitamin K administration was often missing from
medical records, and how that missing information was treated affected results of
some studies of vitamin K and subsequent cancer risk (10).

• Use blinding. The general approach to blinding was discussed in Chapter 4, but
there are some issues that are specific to designing interviews in case–control
studies. Because both observers and study subjects could be blinded both to the
case–control status of each subject and to the risk factor being studied, four types
of blinding are possible (Table 8.2).

TABLE 8.2 Approaches to Blinding Interview Questions in a Case–Control Study

Person Blinded Blinding Case–Control Status
Blinding Risk
Factor Measurement

Subject Possible if both cases and controls have
diseases that could plausibly be related to
the risk factor

Include ‘‘dummy’’ risk factors and be
suspicious if they differ between cases
and controls

May not work if the risk factor for the
disease has already been publicized

Observer Possible if cases are not externally
distinguishable from controls, but subtle
signs and statements, volunteered by the
subjects make it difficult

Possible if interviewer is not the
investigator, but may be difficult to
maintain
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Ideally, neither the study subjects nor the observers should know which subjects
are cases and which are controls. If this can be done successfully, differential bias in
measuring the predictor variable is eliminated. In practice, this is often difficult. The
subjects know whether they are sick or well, so they can be blinded to case–control
status only if controls are also ill with diseases that they believe might be related to
the risk factors being studied. (Of course, if the controls are selected for a disease that
is related to the risk factor being studied, it will cause sampling bias.) Efforts to blind
interviewers are hampered by the obvious nature of some diseases (an interviewer
can hardly help noticing if the subject is jaundiced or has had a laryngectomy), and
by the clues that interviewers may discern in the subject’s responses.

Blinding to specific risk factors being studied is usually easier than blinding
to case–control status. Case–control studies are often first steps in investigating an
illness, so there may not be one risk factor of particular interest. When there is, the
study subjects and the interviewer can be kept in the dark about the study hypotheses
by including ‘‘dummy’’ questions about plausible risk factors not associated with
the disease. For example, if the specific hypothesis to be tested is whether honey
intake is associated with increased risk of infant botulism, equally detailed questions
about jelly, yogurt, and bananas could be included in the interview. This type of
blinding does not actually prevent differential bias, but it allows an estimate of
whether it is a problem: if the cases report more exposure to honey but no increase
in the other foods, then differential measurement bias is less likely. This strategy
would not work if the association between infant botulism and honey had previously
been widely publicized or if some of the dummy risk factors turned out to be real
risk factors.

Blinding the observer to the case–control status of the study subject is a
particularly good strategy for laboratory measurements such as blood tests and
x-rays. Blinding under these circumstances is easy and should always be done:
someone other than the individual who will make the measurement simply applies
coded identification labels to each specimen. The importance of blinding was
illustrated by 15 case–control studies comparing measurements of bone mass
between hip fracture patients and controls; much larger differences were found in
the studies that used unblinded measurements than in the blinded studies (15).

Case-Crossover Studies
A variant of the case–control design, useful for studying the short-term effects of
intermittent exposures, is the case-crossover design (16). As with regular case–control
studies, these are retrospective studies that begin with a group of cases: people who
have had the outcome of interest. However, unlike traditional case–control studies, in
which the exposures of the cases are compared with exposures of a group of controls,
in case-crossover studies each case serves as his or her own control. Exposures of the
cases at the time (or right before) the outcome occurred are compared with exposures
of those same cases at one or more other points in time.

For example, McEvoy et al. (17) studied cases who were injured in car crashes
and reported owning or using a mobile phone. Using phone company records, they
compared mobile phone usage in the 10 minutes before the crash with usage when the
subjects were driving at the same time of day 24 hours, 72 hours, and 7 days before
the crash. They found that mobile phone usage was more likely in the 10 minutes
before a crash than in the comparison time periods, with an odds ratio of about 4.
The analysis of a case-crossover study is like that of a matched case–control study,
except that the control exposures are exposures of the case at different time periods,
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TABLE 8.3 Advantages and Disadvantages of the Major Observational Designs

Design Advantages Disadvantages∗

Cohort

All Establishes sequence of events Often requires large sample sizes

Multiple predictors and outcomes Less feasible for rare outcomes

Number of outcome events grows over time

Yields incidence, relative risk, excess risk

Prospective More control over subject selection and
measurements

Follow-up can be lengthy
Often expensive

Avoids bias in measuring predictors

Retrospective Follow-up is in the past
Relatively inexpensive

Less control over subject selection
and measurements

Multiple cohort Useful when distinct cohorts have different or
rare exposures

Bias and confounding from
sampling several populations

Cross-sectional

Relatively short duration
A good first step for a cohort study or clinical
trial
Yields prevalence of multiple predictors and
outcomes

Does not establish sequence of
events
Not feasible for rare predictors or
rare outcomes
Does not yield incidence

Case–Control

Useful for rare outcomes
Short duration, small sample size
Relatively inexpensive
Yields odds ratio (resembles relative risk for
uncommon outcomes)

Bias and confounding from
sampling two populations
Differential measurement bias
Limited to one outcome variable
Sequence of events unclear
Does not yield prevalence,
incidence, or excess risk

Combination Designs

Nested
case–control

Advantages of a retrospective cohort design,
only much more efficient

Suitable cohort and specimens
many not be available

Nested
case–cohort

Can use a single control group for multiple
case–control studies

Suitable cohort and specimens
many not be available

Case-crossover Cases serve as their own controls, reducing
random error and confounding

Requires special circumstances

∗ All these observational designs have the disadvantage (compared with randomized trials) of being susceptible to the influence
of confounding variables—See Chapter 9.
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rather than exposures of the matched control. This is illustrated in ‘‘Case-crossover
Study’’ in Appendix 8A. Other examples of use of the case-crossover design include
a series of studies of possible triggers of myocardial infarction, including episodes of
anger (18), and use of marijuana (19) and of sildenafil (Viagra) (20).

CHOOSING AMONG OBSERVATIONAL DESIGNS

The pros and cons of the main observational designs presented in the last two chapters
are summarized in Table 8.3. We have already described these issues in detail and
will make only one final point here. Among all these designs, none is best and none
is worst; each has its place and purpose, depending on the research question and the
circumstances.

SUMMARY

1. In a cross-sectional study, the variables are all measured at a single point in time,
with no structural distinction between predictors and outcomes. Cross-sectional
studies are valuable for providing descriptive information about prevalence; they
also have the advantage of avoiding the time, expense, and dropout problems
of a follow-up-design.

2. Cross-sectional studies yield weaker evidence for causality than cohort studies,
because the predictor variable is not shown to precede the outcome. A further
weakness is the need for a large sample size (compared with that of a case–control
study) when studying uncommon diseases. The cross-sectional design can be used
for an uncommon disease in a case series of patients with that disease, and it often
serves as the first step of a cohort study or experiment.

3. In a case–control study, the prevalence of risk factors in a sample of subjects who
have a disease or other outcome of interest (the cases) is compared with that in a
separate sample who do not (the controls). This design is relatively inexpensive
and uniquely efficient for studying rare diseases.

4. One problem with case–control studies is their susceptibility to sampling bias.
Four approaches to reducing sampling bias are (a) to sample controls and cases in
the same (admittedly unrepresentative) way; (b) to match the cases and controls;
(c) to do a population-based study; and (d) to use several control groups sampled
in different ways.

5. The other major problem with case–control studies is their retrospective design,
which makes them susceptible to measurement bias that affects cases and controls
differentially. Such bias can be reduced by measuring the predictor prior to the
outcome and by blinding the subjects and observers.

6. Case-crossover studies are a variation on the matched case–control design in
which observations at two points in time allow each case to serve as his or her own
control.
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APPENDIX 8A

Calculating Measures of Association

1. Cross-sectional study. Reijneveld (21) did a cross-sectional study of maternal smok-
ing as a risk factor for infant colic. Partial results are shown below:

Outcome Variable:
Predictor Variable Infant Colic No Infant Colic Total

Mother smokes
15–50 cigarettes/day

15 (a) 167 (b) 182 (a + b)

Mother does not
smoke

111 (c) 2,477 (d) 2,588 (c + d)

Total 126 (a + c) 2,644 (b + d) 2,770 (a + b + c + d)

Prevalence of colic with smoking mothers = a/(a + b) = 15/182 = 8.2%.

Prevalence of colic with nonsmoking mothers = c/(c + d) = 111/2, 588 = 4.3%.

Prevalence of colic overall = (a + c)/(a + b + c + d) = 126/2, 770 = 4.5%.

Relative prevalence1=8.2%
4.3%

= 1.9

Excess prevalence1 = 8.2% − 4.3% = 3.9%

2. Case–control study. The research question for Example 8.2 was whether there is
an association between IM vitamin K and risk of childhood leukemia. The findings
were that 69/107 leukemia cases and 63/107 controls had received IM vitamin
K. A two-by-two table of these findings is as follows:

Outcome Variable: Diagnosis
Predictor Variable:
Medication History Childhood Leukemia Control

IM vitamin K 69(a) 63(b)
No IM vitamin K 38(c) 44(d)
Total 107 107

Relative risk ≈ odds ratio = ad
bc

= 69 × 44
63 × 38

= 1.27

Because the disease (leukemia in this instance) is rare, the odds ratio provides a
good estimate of the relative risk.2

3. Matched case–control study
(To illustrate the similarity between analysis of a matched case–control study
and a case-crossover study, we will use the same example for both.) The

1Relative prevalence and excess prevalence are the cross-sectional analogs of relative risk and excess risk.
2The authors actually did a multivariate, matched analysis, as was appropriate for the matched design, but in this case the
simple, unmatched odds ratio was almost the same as the one reported in the study.



Chapter 8 ■ Designing Cross-sectional and Case–Control Studies 123

research question is whether mobile telephone use increases the risk of car crashes
among mobile telephone owners. A traditional matched case–control study might
consider self-reported frequency of using a mobile telephone while driving as the
risk factor. Then the cases would be people injured in crashes and they could
be matched to controls who had not been in crashes by age, sex, and mobile
telephone prefix. The cases and controls would be asked whether they ever use a
mobile telephone while driving. (To simplify, for this example, we dichotomize the
exposure and consider people as either ‘‘users’ or ‘‘nonusers’’ of mobile telephones
while driving.) We then classify each case/control pair according to whether both
are users, neither is a user, or the case was a user but not the control, or the control
was a user but not the case. If we had 300 pairs, the results might look like this:

Cases (with crash injuries)

Matched Controls User Nonuser Total

User 110 40 150
Nonuser 90 60 150
Total 200 100 300

The table above shows that there were 90 pairs where the case ever used a mobile
phone while driving, but not the matched control, and 40 pairs where the matched
control but not the case was a ‘‘user.’’ Note that this 2 × 2 table is different from
the 2 × 2 table from the unmatched vitamin K study above, in which each cell in
the table is the number of people in that cell. In the 2 × 2 table for a matched
case–control study the number in each cell is the number of pairs of subjects
in that cell; the total N in the table above is therefore 600 (300 cases and 300
controls). The odds ratio for such a table is simply the ratio of the two types of
discordant pairs; in the table above the OR = 90/40 = 2.25.

4. Case-crossover study
Now consider the case-crossover study of the same question. Data from the study
by McEvoy et al. are shown below.

Crash Time Period

Seven Days Before Crash Driver Using Phone Not Using Total

Driver using phone 5 6 11
Not using 27 288 315
Total 32 294 326

For the case-crossover study, each cell in the table is a number of subjects, not
a number of pairs, but each cell represents two time periods for that one subject:
the time period just before the crash and a comparison time period 7 days before.
Therefore the 5 in the upper left cell means there were 5 drivers involved in
crashes who were using a mobile phone just before they crashed, and also using a
mobile phone during the comparison period 7 days before, while the 27 just below
indicates that there were 27 drivers involved in crashes who were using a phone
just before crashing, but not using a phone during the comparison period 7 days
before. The odds ratio is the ratio of the numbers of discordant time periods, in
this example 27/6 = 4.5.
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APPENDIX 8B

Why the Odds Ratio Can Be Used as an Estimate for Relative
Risk in a Case–Control Study

The data in a case–control study represent two samples: the cases are drawn from
a population of people who have the disease and the controls from a population of
people who do not have the disease. The predictor variable is measured, and the
following two-by-two table produced:

Disease No Disease

Risk factor present a b

Risk factor absent c d

If this two-by-two table represented data from a cohort study, then the incidence
of the disease in those with the risk factor would be a/(a + b) and the relative risk
would be simply [a/(a + b)]/[c/(c + d)]. However, it is not appropriate to compute
either incidence or relative risk in this way in a case–control study because the two
samples are not drawn from the population in the same proportions. Usually, there
are roughly equal numbers of cases and controls in the study samples but many fewer
cases than controls in the population. Instead, relative risk in a case–control study can
be approximated by the odds ratio, computed as the cross-product of the two-by-two
table, ad/bc.

This extremely useful fact is difficult to grasp intuitively but easy to demonstrate
algebraically. Consider the situation for the full population, represented by a′, b′, c′,
and d′.

Disease No Disease

Risk factor present a′ b′
Risk factor absent c′ d ′

Here it is appropriate to calculate the risk of disease among people with the risk
factor as a′/(a′ + b′), the risk among those without the risk factor as c′/(c′ + d′),
and the relative risk as [a′/(a′ + b′)]/[c′/(c′ + d′)]. We have already discussed the
fact that a′/(a′ + b′) is not equal to a/(a + b). However, if the disease is relatively
uncommon (as most are), then a′ is much smaller than b′, and c′ is much smaller than
d′. This means that a′/(a′ + b′) is closely approximated by a′/b′ and that c′/(c′ + d′)
is closely approximated by c′/d′. Therefore the relative risk of the population can be
approximated as follows:

a′/(a′ + b′)
c′/(c′ + d′)

≈ a′/b′

c′/d′

The latter term is the odds ratio of the population (literally, the ratio of the odds of
disease in those with the risk factor, a′/b′, to the odds of disease in those without the
risk factor, c′/d′). This can be rearranged as the cross-product:

(
a′

b′

) (
d′

c′

)
=

(
a′

c′

)(
d′

b′

)
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However, a′/c′ in the population equals a/c in the sample if the cases are representative
of all cases in the population (i.e., have the same prevalence of the risk factor). Similarly,
b′/d′ equals b/d if the controls are representative.

Therefore the population parameters in this last term can be replaced by the
sample parameters, and we are left with the fact that the odds ratio observed in
the sample, ad/bc, is a close approximation of the relative risk in the population,
[a′/(a′ + b′)]/[c′/(c′ + d′)], provided that the disease is rare and sampling error
(systematic as well as random) is small.
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9 Enhancing Causal

Inference in Observational

Studies

Thomas B. Newman, Warren S. Browner, and Stephen B. Hulley

For many research questions, the inference that an association represents a cause–
effect relation is important. (Exceptions are studies of diagnostic and prognostic tests,
discussed in Chapter 12.) The ability to make that inference depends upon decisions
made during both the design and analysis phases of a study. Although this text is
concerned primarily with designing clinical research, in this chapter we discuss ways
to strengthen causal inference in both phases, because knowledge of analysis phase
options can help inform decisions about study design. We begin with a discussion
of how to avoid spurious associations and then concentrate on ruling out real
associations that do not represent cause–effect, especially those due to confounding.

Suppose that a study reveals an association between coffee drinking and myocardial
infarction (MI). One possibility is that coffee drinking is a cause of MI. Before reaching
this conclusion, however, four rival explanations must be considered (Table 9.1).
The first two of these, chance (random error) and bias (systematic error), represent
spurious associations: coffee drinking and MI are associated only in the study findings,
not in the population.

Even if the association is real, however, it may not represent a cause–effect
relationship. Two rival explanations must be considered. One is the possibility of
effect–cause—that having an MI makes people drink more coffee. (This is just cause
and effect in reverse.) The other is the possibility of confounding, in which a third
factor (such as cigarette smoking) is both associated with coffee drinking and a cause
of MI.

SPURIOUS ASSOCIATIONS

Ruling Out Spurious Associations Due to Chance
Imagine that there is no association between coffee drinking and MI in the population,
and that 60% of the entire population drinks coffee, whether or not they have had an
MI. If we were to select a random sample of 20 patients with MI, we would expect

127
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TABLE 9.1 The Five Explanations When an Association between Coffee
Drinking and Myocardial Infarction (MI) is Observed in a Sample

Explanation
Type of
Association

What’s Really Going
on in the Population? Causal Model

1. Chance (random Spurious Coffee drinking and MI are not —
error) related

2. Bias (systematic Spurious Coffee drinking and MI are not —
error) related

3. Effect–cause Real MI is a cause of coffee drinking Coffee drinking ← MI

4. Confounding Real Coffee drinking is associated
with a third, extrinsic factor that
is a cause of MI

Factor X

Coffee drinking MI

5. Cause–effect Real Coffee drinking is a cause of MI Coffee drinking → MI

about 12 of them to drink coffee. But by chance alone we might happen to get
19 coffee drinkers in a sample of 20 patients with MI. In that case, unless we were
lucky enough to get a similar chance excess of coffee drinkers among the controls, a
spurious association between coffee consumption and MI would be observed. Such
an association due to random error (chance), if statistically significant, is called a
type I error (Chapter 5).

Strategies for addressing random error are available in both the design and analysis
phases of research (Table 9.2). The design strategies of increasing the precision of
measurements and increasing the sample size are important ways to reduce random
error that are discussed in Chapters 4 and 6. The analysis strategy of calculating
P values helps the investigator quantify the magnitude of the observed association
in comparison with what might have occurred by chance alone. For example, a P
value of 0.10 indicates that the observed value of the test statistic (or larger) would
occur by chance alone about one time in ten. Confidence intervals show a range of
values for the parameter being estimated (e.g., risk ratio) that are consistent with that
estimate, based on the study’s results.

Ruling Out Spurious Associations Due to Bias
Associations that are spurious because of bias are trickier. To understand bias it
is helpful to distinguish between the research question and the question actually
answered by the study (Chapter 1). The research question is what the investigator
really wishes to answer, while the question answered by the study reflects the
compromises the investigator needed to make for the study to be feasible. Bias can
be thought of as a systematic difference between the research question and the actual
question answered by the study that causes the study to give the wrong answer to the
research question. Strategies for minimizing these systematic errors are available in
both the design and analysis phases of research (Table 9.2).

• Design Phase. Many kinds of bias have been identified, and dealing with some
of them has been a major topic of this book. To the specific strategies noted in
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TABLE 9.2 Strengthening the Inference that an Association has a Cause–Effect
Basis: Ruling Out Spurious Associations

Type of
Spurious
Association

Design Phase
(How to Prevent
the Rival Explanation)

Analysis Phase
(How to Evaluate
the Rival Explanation)

Chance (due to
random error)

Increase sample size and other
strategies to increase precision
(Chapters 4 and 6)

Calculate P values and confidence
intervals

Interpret them in the context of prior
evidence (Chapter 5)

Bias (due to
systematic error)

Carefully consider the potential
consequences of each difference
between the research question and
the study plan (see Fig. 1.6):

Obtain additional data to see if
potential biases have actually
occurred

population/subjects
phenomena/measurements

Check consistency with other
studies (especially those using
different methods)

Chapters 3, 4, 7, and 8 we now add a general approach to minimizing sources
of bias. Write down the research question and the study plan side by side, as in
Figure 9.1. Then carefully think through the following three concerns as they
pertain to this particular research question:
a. Do the samples of study subjects (e.g., cases and controls or exposed and

unexposed subjects) represent the population(s) of interest?
b. Do the measurements of the predictor variables represent the predictors of

interest?
c. Do the measurements of the outcome variables represent the outcomes of

interest?
For each question, answered ‘‘No’’ or ‘‘Maybe not,’’ consider whether the bias

applies similarly to one or both groups studied (e.g., cases and controls or exposed
and unexposed) and whether it is large enough to affect the answer to the research
question.

To illustrate this with our coffee and MI example, consider the implications of
drawing the sample of control subjects from a population of hospitalized patients.
If many of these patients have chronic illnesses that have caused them to reduce
their coffee intake, the sample of controls will not represent the target population
from which the patients with MI arose; there will be a shortage of coffee drinkers.
Furthermore, if coffee drinking is measured by questionnaire, the answers on the
questionnaire may not accurately represent actual coffee drinking, the predictor
of interest. And if esophageal spasm, which can be exacerbated by coffee, is
misdiagnosed as MI, a spurious association between coffee and MI could be found
because the measured outcome (diagnosis of MI) did not accurately represent the
outcome of interest (actual MI).

The next step is to think about possible strategies for preventing each potential
bias. For example, as discussed in Chapter 8, selecting more than one control group
in a case–control study is one approach to addressing sampling bias. In Chapter 4
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Study plan

Intended
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study
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FIGURE 9.1. Minimizing bias by comparing the research question and the study
plan.

we suggested strategies for reducing measurement bias. In each case, judgments
are required about the likelihood of bias, and how easily it could be prevented
with changes in the study plan. If the bias is easily preventable, revise the study
plan and ask the three questions again. If the bias is not easily preventable, decide
whether the study is still worth doing by making a judgment on the likelihood of
the potential bias and the degree to which it will compromise the conclusions.

• Analysis Phase. The investigator is often faced with one or more potential biases
after the data have been collected. Some may have been anticipated but too difficult
to prevent, and others may not have been suspected until it was too late to avoid
them.

In either situation, one approach is to obtain additional information to
estimate the magnitude of the potential bias. Suppose, for example, the inves-
tigator is concerned that the hospitalized control subjects do not represent the
target population of people free of MI because they have decreased their cof-
fee intake due to chronic illness. The magnitude of this sampling bias could
be estimated by reviewing the diagnoses of the control subjects and separating
them into two groups: those with illnesses that might alter coffee habits and
those with illnesses that would not. If both types of controls drank less coffee
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than the MI cases, then sampling bias would be a less likely explanation for the
findings. Similarly, if the investigator is concerned that a questionnaire does not
accurately capture coffee drinking (perhaps because of poorly worded questions),
she could assign a blinded interviewer to question a subset of the cases and con-
trols to determine the agreement with their questionnaire responses. Finally, if
it is the outcome measure that is in doubt, the investigator could specify ob-
jective electrocardiographic and serum enzyme changes needed for the diagnosis,
and reanalyze the data excluding the subset of cases that do not meet these
criteria.

The investigator can also look at the results of other studies. If the con-
clusions are consistent, the association is less likely to be due to bias. This is
especially true if the other studies have used different methods and are there-
fore unlikely to share the same biases. In many cases, potential biases turn
out not to be a major problem. The decision on how vigorously to pursue
additional information and how best to discuss these issues in reporting the
study are matters of judgment for which it is helpful to seek advice from col-
leagues.

REAL ASSOCIATIONS OTHER THAN CAUSE–EFFECT

In addition to chance and bias, the two types of associations that are real but do not
represent cause–effect must be considered (Table 9.3).

Effect–Cause
One possibility is that the cart has come before the horse—the outcome has caused the
predictor. Effect–cause is often a problem in cross-sectional and case–control studies,
especially when the predictor variable is a laboratory test for which no previous values
are available, and in case-crossover studies if the timing of events is uncertain. For
example, in the study of mobile phone use and motor vehicle accidents described in

TABLE 9.3 Strengthening the Inference that an Association
has a Cause–Effect Basis: Ruling Out Other Real Associations

Type of Real
Association

Design Phase
(How to Prevent
the Rival Explanation)

Analysis Phase
(How to Evaluate
the Rival Explanation)

Effect–cause (the outcome is
actually the cause of the predictor)

Do a longitudinal
study

Consider biologic
plausibility

Obtain data on the
historic sequence of
the variables

Consider findings of
other studies with
different designs

(Ultimate solution: do
a randomized trial)

Confounding (another variable is
associated with the predictor and a
cause of the outcome)

See Table 9.4 See Table 9.5
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Chapter 8, a car crash could cause a mobile phone call (to report the crash right after
it happened), rather than vice versa. To address this possibility, the investigators asked
drivers who had been involved in a crash about phone use both before and after the
crash, and verified the responses using phone records and the estimated time of the
crash (1).

Effect–cause is less commonly a problem in cohort studies because risk factor
measurements can be made in a group of people who do not yet have the disease.
Even in cohort studies, however, effect–cause is possible if the disease has a long
latent period and those with subclinical disease cannot be identified at baseline. For
example, type 2 diabetes is associated with subsequent risk of pancreatic cancer. Some
of this association is almost certainly effect–cause, because pancreatic cancer can cause
diabetes, and the association between diabetes and pancreatic cancer diminishes with
follow-up time (2). However, some association persists (a relative risk of about 1.5)
even when pancreatic cancer cases diagnosed within 4 years of the onset of diabetes
are excluded, leaving open the possibility that part of the relationship might be
cause–effect.

This example illustrates a general approach to ruling out effect–cause: drawing
inferences from assessments of the variables at different points in time. In addition,
effect–cause is often unlikely on the grounds of biologic implausibility. For example,
it is unlikely that incipient lung cancer causes cigarette smoking.

Confounding
The other rival explanation in Table 9.3 is confounding, which occurs when there
is a third factor involved in the association that is the real cause of the outcome.
The word confounding usually means something that confuses interpretation, but in
clinical research the term has a more specific definition.

A confounding variable is one that is associated with the predictor variable,
and a cause of the outcome variable.

Cigarette smoking is a likely confounder in the coffee and MI example because
smoking is associated with coffee drinking and is a cause of MI. If this is the
actual explanation, then the association between coffee and MI does not represent
cause–effect although it is still real; the coffee is an innocent bystander. Appendix 9A
gives a numeric example of how cigarette smoking could cause an apparent association
between coffee drinking and MI.

Aside from bias, confounding is often the only likely alternative explanation to
cause–effect and the most important one to try to rule out. It is also the most
challenging; much of the rest of this chapter is devoted to strategies for coping with
confounders.

COPING WITH CONFOUNDERS IN THE DESIGN PHASE

In observational studies, most strategies for coping with confounding variables require
that an investigator be aware of and able to measure them. It is helpful to list the
variables (like age and sex) that may be associated with the predictor variable of
interest and that may also be a cause of the outcome. The investigator must then
choose among design and analysis strategies for controlling the influence of these
potential confounding variables.
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TABLE 9.4 Design Phase Strategies for Coping with Confounders

Strategy Advantages Disadvantages

Specification • Easily understood
• Focuses the sample of subjects

for the research question at hand

• Limits generalizability
• May make it difficult to acquire

an adequate sample size
Matching • Can eliminate the influence of

strong constitutional
confounders like age and sex

• Can eliminate the influence of
confounders that are difficult to
measure

• Can increase precision (power)
by balancing the number of
cases and controls in each
stratum

• May be a sampling convenience,
making it easier to select the
controls in a case–control study

• May be time consuming and
expensive; less efficient than
increasing the number of
subjects

• Decision to match must be made
at the outset of the study and
can have an irreversible adverse
effect on the analysis and
conclusions

• Requires an early decision about
which variables are predictors
and which are confounders

• Eliminates the option of studying
matched variables as predictors
or as intervening variables

• Requires a matched analysis
• Creates the danger of

overmatching (i.e., matching on
a factor that is not a confounder,
thereby reducing power)

• Only feasible for case–control
and multiple-cohort studies

‘‘Opportunistic’’
study designs

• Can provide great strength of
causal inference

• May be a lower cost and elegant
alternative to a randomized trial

• Only possible in select
circumstances where the
predictor variable is randomly or
virtually randomly assigned, and
an instrumental variable exists

The first two design phase strategies (Table 9.4), specification and matching,
involve changes in the sampling scheme. Cases and controls (in a case–control study)
or exposed and unexposed subjects (in a cohort study) are sampled in such a way
that they have comparable values of the confounding variable. This removes the
confounder as an explanation for any association that is observed between predictor
and outcome. The third design phase strategy, use of what we call opportunistic
study designs, is only applicable to selected research questions for which the right
conditions exist. However, when applicable, these designs resemble randomized trials
in their ability to reduce or eliminate confounding not only by measured variables,
but by unmeasured variables as well.

Specification
The simplest strategy is to design inclusion criteria that specify a value of the potential
confounding variable and exclude everyone with a different value. For example, the
investigator studying coffee and MI could specify that only nonsmokers be included
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in the study. If an association were then observed between coffee and MI, it obviously
could not be due to smoking.

Specification is an effective strategy, but, as with all restrictions in the sampling
scheme, it has disadvantages. First, even if coffee does not cause MI in nonsmokers,
it may cause them in smokers. (This phenomenon—an effect of coffee on MI
that is different in smokers from that in nonsmokers—is called effect modification
or interaction.) Therefore, specification limits the generalizability of information
available from a study, in this instance compromising our ability to generalize to
smokers. Second, if smoking is highly prevalent among the patients available for the
study, the investigator may not be able to recruit a large enough sample of nonsmokers.

These problems can become serious if specification is used to control too many
confounders or to control them too narrowly. Sample size and generalizability would
be major problems if a study were restricted to lower-income, nonsmoking, 70- to
75-year-old men.

Matching
In a case–control study, matching involves selecting cases and controls with matching
values of the confounding variable(s). Matching and specification are both sampling
strategies that prevent confounding by allowing comparison only of cases and controls
that share comparable levels of the confounder. Matching differs from specification,
however, in preserving generalizability because subjects at all levels of the confounder
can be studied.

Matching is usually done individually (pairwise matching). In the study of coffee
drinking as a predictor of MI, for example, each case (a patient with an MI) could be
individually matched to one or more controls that smoked roughly the same amount
as the case (e.g., 10 to 20 cigarettes/day). The coffee drinking of each case would
then be compared with the coffee drinking of the matched control(s).

An alternative approach to pairwise matching is to match in groups (frequency
matching). For each level of smoking, the number of cases with that amount of
smoking could be counted, and an appropriate number of controls with the same
level of smoking could be selected. If the study called for two controls per case and
there were 20 cases that had smoked 10 to 20 cigarettes/day, the investigators would
select 40 controls that smoked this amount, matched as a group to the 20 cases.

Matching is most commonly used in case–control studies, but it can also be used
with multiple-cohort designs. For example, to investigate the effects of service in the
1990 to 1991 Gulf War on subsequent fertility in male veterans, Maconochie et al.
compared 51,581 men deployed to the Gulf region during the war with 51,688 men
who were not deployed, but were frequency-matched by service, age, fitness to be
deployed, serving status and rank (3). There was a slightly higher risk of reported
infertility and a longer time to conception in the Gulf War veterans.

There are four main advantages to matching (Table 9.4). The first three relate
to the control of confounding variables; the last is a matter of logistics.

• Matching is an effective way to prevent confounding by constitutional factors
like age and sex that are strong determinants of outcome, not susceptible to
intervention, and unlikely to be an intermediary in a causal pathway.

• Matching can be used to control confounders that cannot be measured and
controlled in any other way. For example, matching siblings (or, better yet, twins)
with one another can control for a whole range of genetic and familial factors that
would be impossible to measure, and matching for clinical center in a multicenter
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study can control for unspecified differences among the populations seen at the
centers.

• Matching may increase the precision of comparisons between groups (and therefore
the power of the study to find a real association) by balancing the number of
cases and controls at each level of the confounder. This may be important if the
available number of cases is limited or if the cost of studying the subjects is high.
However, the effect of matching on precision is modest and not always favorable
(see ‘‘overmatching,’’ below). In general, the desire to enhance precision is a less
important reason to match than the need to control confounding.

• Finally, matching may be used primarily as a sampling convenience, to narrow
down an otherwise impossibly large number of potential controls. For example, in a
nationwide study of toxic shock syndrome, victims were asked to identify friends to
serve as controls (6). This convenience, however, also runs the risk of overmatching.

There are a number of disadvantages to matching (Table 9.4).

• Matching sometimes requires additional time and expense to identify a match for
each subject. In case–control studies, for example, the more matching criteria there
are, the larger the pool of controls that must be searched to match each case. Cases
for which no match can be found will need to be discarded. The possible increase
in statistical power from matching must therefore be weighed against the potential
loss of otherwise eligible cases or controls.

• Because matching is a sampling strategy, the decision to match must be made at
the beginning of the study and is irreversible. This precludes further analysis of the
effect of the matched variables on the outcome. It also can create a serious error if
the matching variable is not a fixed (constitutional) variable like age or sex, but a
variable intermediate in the causal pathway between the predictor and outcome. For
example, if an investigator wishing to investigate the effects of alcohol intake on risk
of MI matched on serum high-density lipoprotein (HDL) levels, she would miss any
beneficial effects of alcohol that are mediated through an increase in HDL. Although
the same error can occur with the analysis phase strategies discussed later, matching
builds the error into the study in a way that cannot be undone; with the analysis
phase strategies the error can be avoided simply by appropriately altering the analysis.

• Correct analysis of pair-matched data requires special analytic techniques that com-
pare each subject only with the individual(s) with whom she has been matched,
and not with subjects who have differing levels of confounders. The use of ordi-
nary statistical analysis techniques on matched data can lead to incorrect results
(generally biased toward no effect) because the assumption that the groups are
sampled independently is violated. This sometimes creates a problem because the
appropriate matched analyses, especially multivariate techniques, are less familiar to
most investigators and less readily available in packaged statistical programs than
are the usual unmatched techniques.

• A final disadvantage of matching is the possibility of overmatching, which occurs
when the matching variable is not a confounder because it is not associated with
the outcome. Overmatching can reduce the power of a case–control study, making
it more difficult to find an association that really exists in the population. In the
study of toxic shock syndrome that used friends for controls, for example, matching
may have inappropriately controlled for regional differences in tampon marketing,
making it more probable that cases and controls would use the same brand of
tampon. It is important to note, however, that overmatching will not distort the
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estimated relative risk (provided that a matched analysis is used); it will only reduce
its statistical significance.1 Therefore when the findings of the study are statisti-
cally significant (as was the case in the toxic shock example), overmatching is not
a problem.

Opportunistic Studies
Under certain conditions or for certain research questions, there may be opportunities
to control for confounding variables in the design phase, even without measuring
them. Because these designs are not generally available, we call them ‘‘opportunistic’’
designs. One example for short-term exposures with immediate effects is the case-
crossover study (Chapter 8)—all potential confounding variables that are constant
over the time (e.g., sex, race, social class, genetic factors) are controlled because each
subject is compared only to herself in a different time period.

Occasionally, investigators discover a natural experiment, in which subjects are
either exposed or not exposed through a process that in effect randomly allocates
them to have or not have a risk factor or intervention. For example, Lofgren et al. (4)
studied the effects of discontinuity of care on test ordering and length of stay by
taking advantage of the fact that patients admitted after 5:00 PM to their institution
were alternately assigned to senior residents that either maintained care of the patients
or transferred them to another team the following morning. They found that patients
whose care was transferred had 38% more laboratory tests (P = 0.01) and 2-day
longer median length of stay (P = 0.06) than those kept on the same team. Similarly,
Bell and Redelmeier (5) studied effects of nursing staffing by comparing outcomes for
patients with selected diagnoses who were admitted on weekends to those admitted
on weekdays. They found higher mortality from all three conditions hypothesized to
be sensitive to staffing ratios, but not for other conditions.

As genetic differences in susceptibility to an exposure are elucidated, a strategy
called Mendelian randomization (6) becomes an option. Mendelian randomization
takes advantage of the fact that for common genetic polymorphisms, the allele a
person receives is determined at random within families, and usually not linked to
relevant confounding variables. Therefore, if people with alleles expected to confer
increased susceptibility to a risk factor do indeed have a higher rate of disease than
those who are either unexposed, or exposed but less susceptible, the study can provide
strong evidence for causality.

For example, some farmers who dip sheep in insecticides (to kill ticks, lice, etc.)
have health complaints that might or might not be due to their occupational exposures.
Investigators at the University of Manchester took advantage of a polymorphism in
the paraoxonase-1 gene, which leads to enzymes with differing ability to hydrolyze the
organophosphate sheep dip diazinonoxon. They hypothesized that if sheep dip was a
cause of ill health in exposed farmers, that farmers with ill health would be more likely
to have alleles associated with reduced paraoxonase-1 activity. They asked farmers who
believed that sheep dip had adversely affected their health to suggest control farmers

1The reason that overmatching reduces power can be seen with a matched pairs analysis of a case–control study. In
the matched analysis, only case–control pairs that are discordant for exposure to the risk factor are analyzed (Appendix
8A). Matching on a variable associated with the risk factor will lead to fewer discordant pairs, and hence smaller
effective sample size and less power. Of course, this happens to some extent any time matching is used, not just with
overmatching. The difference with overmatching is that this cost comes with no benefit, because the matching was
not necessary to control confounding. If a matched analysis is not used, then the estimate of the effect size will be
distorted, because the matching causes the cases and controls to be more likely to have the same value of the risk
factor.
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who were similarly exposed to sheep dip, but in good health. Their finding that
exposed farmers with health complaints had a higher frequency of alleles associated
with reduced paraoxonase-1 activity than similarly exposed but asymptomatic farmers
provided strong evidence of a causal relationship between exposure to sheep dip and
ill health (7).

Natural experiments and Mendelian randomization are examples of a more
general approach to enhancing causal inference in observational studies, use of
instrumental variables. These are variables associated with the predictor of interest,
but not independently associated with outcome. Whether someone is admitted on a
weekend, for example, is associated with staffing levels, but was thought not to be
independently associated with mortality risk (for the diagnoses studied), so admission
on a weekend can be considered an instrumental variable. Similarly, activity of the
paraoxonase-1 enzyme is associated with possible toxicity due to dipping sheep, but
not otherwise associated with ill health. Other examples of instrumental variables are
draft lottery number (used to investigate delayed effects of military service during the
Vietnam War era (8)) and the distance of residence from a facility that does coronary
revascularization procedures (used to investigate the effects of these procedures on
mortality (9)).

COPING WITH CONFOUNDERS IN THE ANALYSIS
PHASE

Design phase strategies require deciding at the outset of the study which variables
are predictors and which are confounders. An advantage of analysis phase strategies
is that they allow the investigator to defer that decision until she has examined the
data for evidence as to which variables may be confounders (i.e., associated with the
predictor of interest and a cause of the outcome).

Sometimes there are several predictor variables, each of which may act as a
confounder to the others. For example, although coffee drinking, smoking, male
sex, and personality type are associated with MI, they are also associated with each
other. The goal is to determine which of these predictor variables are independently
associated with MI and which are associated with MI only because they are associated
with other (causal) risk factors. In this section, we discuss analytic methods for assessing
the independent contribution of predictor variables in observational studies. These
methods are summarized in Table 9.5.

Stratification
Like specification and matching, stratification ensures that only cases and controls (or
exposed and unexposed subjects) with similar levels of a potential confounding variable
are compared. It involves segregating the subjects into strata (subgroups) according
to the level of a potential confounder and then examining the relation between
the predictor and outcome separately in each stratum. Stratification is illustrated in
Appendix 9A. By considering smokers and nonsmokers separately (‘‘stratifying on
smoking’’), the confounding effects of smoking can be removed.

Appendix 9A also illustrates interaction, in which stratification reveals that
the association between predictor and outcome varies with the level of a third
factor. Because the third factor (smoking in this example) modifies the effect of the
predictor (coffee drinking) on outcome (MI), interaction is sometimes also called
effect modification. By chance alone the estimates of association in different strata
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TABLE 9.5 Analysis Phase Strategies for Coping with Confounders

Strategy Advantages Disadvantages

Stratification • Easily understood
• Flexible and reversible; can choose

which variables to stratify upon after
data collection

• Number of strata limited by sample
size needed for each stratum
• Few covariables can be

considered
• Few strata per covariable leads to

incomplete control of
confounding

• Relevant covariables must have
been measured

Statistical
adjustment

• Multiple confounders can be
controlled simultaneously

• Information in continuous variables
can be fully used

• Flexible and reversible

• Model may not fit:
• Incomplete control of

confounding (if model does not fit
confounder-outcome
relationship)

• Inaccurate estimates of strength
of effect (if model does not fit
predictor-outcome relationship)

• Results may be hard to understand.
(Many people do not readily
comprehend the meaning of a
regression coefficient.)

• Relevant covariables must have
been measured

Propensity
scores

• Multiple confounders can be
controlled simultaneously

• Information in continuous variables
can be fully used

• Enhances control for confounding
when more people receive the
treatment than get the outcome

• If a stratified or matched analysis is
used, does not require model
assumptions

• Flexible and reversible

• Results may be hard to understand
• Relevant covariables must have

been measured
• Can only be done for exposed and

unexposed subjects with
overlapping propensity scores,
reducing sample size

will rarely be precisely the same, and interaction introduces additional complexity,
because a single measure of association no longer can summarize the relationship
between predictor and outcome. For this reason, before concluding that an interaction
is present, it is necessary to assess its biological plausibility and statistical significance
(using a formal test for interaction, or, as a shortcut, checking to see whether the
confidence intervals in the different strata overlap). The issue of interaction also arises
for subgroup analyses of clinical trials (Chapter 11), and for meta-analyses when
homogeneity of studies is being considered (Chapter 13).

Stratification resembles matching and specification in being easily understood.
An advantage of stratification is its flexibility: by performing several stratified analyses,
the investigators can decide which variables appear to be confounders and ignore
the remainder. (This is done by determining whether the results of stratified analyses
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substantially differ from those of unstratified analyses; see Appendix 9A.) Stratification
also has the advantage over design phase strategies of being reversible: no choices
need be made at the beginning of the study that might later be regretted.

The principal disadvantage of stratified analysis is the limited number of variables
that can be controlled simultaneously. For example, possible confounders in the coffee
and MI study might include age, systolic blood pressure, serum cholesterol, cigarette
smoking, and alcohol intake. To stratify on these five variables, with three strata for
each, would require 35(= 243) strata! With this many strata there will be some with
no cases or no controls, and these strata cannot be used.

To maintain a sufficient number of subjects in each stratum, a variable is often
divided into just two strata. When the strata are too broad, however, the confounder
may not be adequately controlled. For example, if the preceding study stratified using
only two age strata (e.g., age < 50 and age ≥50), some residual confounding would
still be possible if within each stratum the subjects drinking the most coffee were older
and therefore at higher risk of MI.

Adjustment
Several statistical techniques are available to adjust for confounders. These techniques
model the nature of the associations among the variables to isolate the effects of
predictor variables and confounders. For example, a study of the effect of lead levels
on IQ in children might examine parental education as a potential confounder.
Statistical adjustment might model the relation between parents’ years of schooling
and the child’s IQ as a straight line, in which each year of parent education is
associated with a fixed increase in child IQ. The IQs of children with different lead
levels could then be adjusted to remove the effect of parental education using the
approach described in Appendix 9B. Similar adjustments can be made for several
confounders simultaneously, using software for multivariate analysis.

One of the great advantages of multivariate adjustment techniques is the
capacity to adjust for the influence of many confounders simultaneously. Another
advantage is their use of all the information in continuous variables. It is easy, for
example, to adjust for a parent’s education level in 1-year intervals, rather than
stratifying into just two categories.

There are, however, two disadvantages of multivariate adjustment. First,
the model may not fit. Computerized statistical packages have made these models
so accessible that the investigator may not stop to consider whether their use is
appropriate for the predictor and outcome variables in the study. Taking the example
in Appendix 9B, the investigator should examine whether the relation between the
parents’ years of schooling and the child’s IQ is actually linear. If the pattern is very
different (e.g., the slope of the line becomes steeper with increasing education) then
attempts to adjust IQ for parental education using a linear model will be imperfect
and the estimate of the independent effect of lead will be incorrect.

Second, the resulting highly derived statistics are difficult to understand intuitively.
This is particularly a problem if a simple model does not fit and transformations (e.g.,
parental education squared) or interaction terms (used when the effect of one variable
is modified by another) are needed.

Propensity Scores
Propensity scores are a relatively new analytic technique that can be useful in ob-
servational studies of treatment efficacy. They are a tool for controlling confounding
by indication—the problem that patients for whom a treatment is indicated (and



140 Study Designs

hence prescribed) are often at higher risk or otherwise intrinsically different from
those who do not get the treatment. Recall that in order to be a confounder, a
variable must be associated with both the predictor and outcome. Instead of ad-
justing for all other factors that predict outcome, use of propensity scores involves
creating a multivariate (usually logistic) model to predict receipt of the treatment.
Each subject can then be assigned a predicted probability of treatment—a propensity
score. This single score can be used as the only confounding variable in stratified or
multivariate analysis. Alternatively, subjects who did and did not receive the treatment
can be matched by propensity score, and outcomes compared between matched
pairs.

Example 9.1 Propensity analysis

Gum et al. (10) prospectively studied 6,174 consecutive adults undergoing stress
echocardiography, 2,310 of whom (37%) were taking aspirin and 276 of whom
died in the 3.1-year follow-up period. In unadjusted analyses, aspirin use was not
associated with mortality (4.5% in both groups). However, when 1,351 patients
who had received aspirin were matched to 1,351 patients with the same propensity
to receive aspirin but who did not, mortality was 47% lower in those treated
(P = 0.002).

Analysis using propensity scores has three distinct advantages. First, the num-
ber of potential confounding variables that can be modeled as predictors of the
intervention in the propensity score is greater than if one is modeling the pre-
dictors of outcome because the number of people treated is generally much
greater than the number who develop the outcome (2,310 compared with 276
in Example 9.1).2 Second, because the potential confounding variables are reduced
to a single score, the primary analysis of the relationship between the main predic-
tor and outcome can be a stratified or matched analysis, which does not require
assumptions about the form of the relationship between predictor, outcome, and
confounding variables. Finally, if the predictor variable is receipt of a prescribed
treatment, investigators might be more confident in understanding determinants of
treatment than determinants of outcome, because after all, treatment decisions are
made by clinicians based on a limited and potentially knowable number of patient
characteristics.

Of course, like other multivariate techniques, use of propensity scores still requires
that potential confounding variables be identified and measured. A limitation of this
technique is that it does not provide information about the relationship between
any of the confounding variables and outcome—the only result is for the treatment
that was modeled with the propensity score. However, because this is an analysis
phase strategy, it does not preclude doing more traditional multivariate analyses as
well, and both types of analysis are usually done. The main disadvantages of this
technique are that it requires an additional step and is less intuitive, less familiar
and less well understood by journals and reviewers than traditional multivariate
analyses.

2Another reason that more confounders can be included is that there is no danger of ‘‘overfitting’’ the propensity
model—interaction terms, quadratic terms, and multiple indicator variables can all be included (11).
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UNDERESTIMATION OF CAUSAL EFFECTS

To this point, we have focused on determining whether observed associations are
causal. The emphasis has been on whether alternative bases for an association exist,
that is, on avoiding a false conclusion that an association is real and causal when it
is not. However, another type of error is also possible—underestimation of causal
effects. It is important to remember that chance, bias and confounding can all be
reasons why a real association might be missed or underestimated.

We discussed chance as a reason for missing an association in Chapter 5, when
we reviewed type II errors and the need to make sure the sample size will provide
adequate power to find real associations. After a study has been completed, however,
the power calculation is no longer the best way to quantify uncertainty due to random
error. At this stage estimating the probability of finding an effect of a specified size is
less relevant than the actual findings, expressed as the observed estimate of association
(e.g., risk ratio) and its 95% confidence interval.

Bias can also distort estimates of association toward no effect. In Chapter 8,
the need for blinding in ascertaining risk factor status among cases and controls was
to avoid differential measurement bias, for example, differences between the cases
and controls in the way questions were asked or answers interpreted that might lead
observers to get the answers they desire. Because observers might desire results in
either direction, differential measurement bias can bias results in either direction.

Confounding can also lead to attenuation of real associations. For example,
suppose coffee drinking actually protected against MI, but was more common in
smokers. If smoking were not controlled for, the beneficial effects of coffee might
be missed—coffee drinkers might appear to have the same risk of MI as those
who did not drink coffee, when (based on their greater smoking) one would have
expected their risk to be higher. This type of confounding, in which the effects
of a beneficial factor are hidden by its association with a cause of the outcome, is
sometimes called suppression (12). It is a common problem for observational studies
of treatments, because treatments are often most indicated in those at higher risk of
a bad outcome. The result, noted earlier, is confounding by indication in which a
beneficial treatment can appear to be useless (as aspirin did in Example 9.1) or even
harmful.

CHOOSING A STRATEGY

What general guidelines can be offered for deciding whether to cope with confounders
during the design or analysis phases, and how best to do it? The use of specification
to control confounding is most appropriate for situations in which the investigator is
chiefly interested in specific subgroups of the population; this is really just a special
form of the general process in every study of establishing criteria for selecting the
study subjects (Chapter 3).

An important decision to make in the design phase of the study is whether to
match. Matching is most appropriate for case–control studies and fixed constitutional
factors such as age, race, and sex. Matching may also be helpful when the sample
size is small compared with the number of strata necessary to control for known
confounders, and when the confounders are more easily matched than measured.
However, because matching can permanently compromise the investigator’s ability
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to observe real associations, it should be used sparingly, particularly for variables
that may be in the causal chain. In many situations the analysis phase strategies
(stratification, adjustment, and propensity scores) are just as good for controlling
confounding, and have the great advantage of being reversible—they allow the
investigator to add or subtract covariates to the statistical model in her efforts to infer
causal pathways.

The decision to stratify, adjust or use propensity scores can wait until after
the data are collected; in many cases the investigator may wish to do all of the
above. However, it is important at the time the study is designed to consider which
factors may later be used for adjustment, in order to know which variables to
measure. Also, because strategies to adjust for the influence of a specific confounding
variable can only succeed to the degree that the confounder is well measured, it
is important to design measurement approaches that have adequate precision and
accuracy (Chapter 4).

Evidence Favoring Causality
The approach to enhancing causal inference has largely been a negative one thus
far—how to rule out the four rival explanations in Table 9.1. A complemen-
tary strategy is to seek characteristics of associations that provide positive evidence
for causality, of which the most important are the consistency and strength of
the association, the presence of a dose–response relation, and biologic plausi-
bility.

When the results are consistent in studies of various designs, it is less likely
that chance or bias is the cause of an association. Real associations that repre-
sent effect–cause or confounding, however, will also be consistently observed. For
example, if cigarette smokers drink more coffee and have more MIs in the pop-
ulation, studies will consistently observe an association between coffee drinking
and MI.

The strength of the association is also important. For one thing, stronger
associations give more significant P values, making chance a less likely explanation.
Stronger associations also provide better evidence for causality by reducing the
likelihood of confounding. Associations due to confounding are indirect (i.e., via the
confounder) and therefore are generally weaker than direct cause–effect associations.
This is illustrated in Appendix 9A: the strong associations between coffee and smoking
(odds ratio = 16) and between smoking and MI (odds ratio = 4) led to a much weaker
association between coffee and MI (odds ratio = 2.25).

A dose–response relation provides positive evidence for causality. The association
between cigarette smoking and lung cancer is an example: moderate smokers have
higher rates of cancer than do nonsmokers, and heavy smokers have even higher
rates. Whenever possible, predictor variables should be measured continuously or in
several categories, so that any dose–response relation that is present can be observed.
Once again, however, a dose–response relation can be observed with effect–cause
associations or with confounding. For example, if heavier coffee drinkers also were
heavier smokers, their MI risk would be greater than that of moderate coffee
drinkers.

Finally, biologic plausibility is an important consideration for drawing causal
inference—if a causal mechanism that makes sense biologically can be proposed,
evidence for causality is enhanced, whereas associations that do not make sense given
our current understanding of biology are less likely to represent cause–effect. It is
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important not to overemphasize biologic plausibility, however. Investigators seem to
be able to come up with a plausible mechanism for virtually any association.

SUMMARY

1. The design of observational studies should anticipate the need to interpret asso-
ciations. The inference that the association represents a cause–effect relationship
(often the goal of the study) is strengthened by strategies that reduce the likelihood
of the four rival explanations—chance, bias, effect–cause, and confounding.

2. The role of chance can be minimized by designing a study with adequate sample
size and precision to assure a low type I error rate. Once the study is completed,
the likelihood that chance is the basis of the association can be judged from the P
value and the consistency of the results with previous evidence.

3. Bias arises from differences between the population and phenomena addressed by
the research question and the actual subjects and measurements in the study. Bias
can be avoided by basing design decisions on a judgment as to whether these
differences will lead to a wrong answer to the research question.

4. Effect–cause is made less likely by designing a study that permits assessment of
temporal sequence, and by considering biologic plausibility.

5. Confounding is made less likely by the following strategies, most of which require
potential confounders to be anticipated and measured:
a. Specification or matching in the design phase, which alters the sampling

strategy to ensure that only groups with similar levels of the confounder
are compared. These strategies should be used sparingly because they can
irreversibly limit the information available from the study.

b. Stratification, adjustment or propensity analysis in the analysis phase, which
accomplish the same goal statistically and preserve more options for inferring
causal pathways. Stratification is the easiest to grasp intuitively, and adjustment
can permit many factors to be controlled simultaneously. Propensity scores
are particularly helpful for addressing confounding by indication in studies of
treatment efficacy.

6. Investigators should be on the lookout for opportunistic observational designs,
including natural experiments, Mendelian randomization and other instru-
mental variable designs, that offer a strength of causal inferences that can
approach that of a randomized clinical trial.

7. In addition to serving as rival explanations for observed associations, chance, bias,
and confounding can also lead to suppression (underestimation) of real causal
associations.

8. Causal inference can be enhanced by positive evidence, notably the consistency
and strength of the association, the presence of a dose–response relation, and
prior evidence on biologic plausibility.
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APPENDIX 9A

Hypothetical Example of Confounding and Interaction
The entries in these tables are numbers of subjects. Therefore, the top left entry means
that there were 90 subjects with MI who drank coffee.

1. If we look at the entire group of study subjects, there appears to be an association
between coffee drinking and MI (odds ratio = 2.25):

Smokers and Nonsmokers
Combined

MI No MI

Coffee 90 60
No coffee 60 90

Odds ratio for MI associated with coffee:

in smokers and non smokers combined = 90 × 90
60 × 60
= 2.25 (P = 0.0005; 95% CI 1.4, 3.7)

2. However, this could be due to confounding, as shown by the tables stratified on
smoking below. These tables show that coffee drinking is not associated with MI
in either smokers or nonsmokers:

Smokers Nonsmokers
MI No MI MI No MI

Coffee 80 40 10 20
No coffee 20 10 40 80

Odds ratio for MI associated with coffee:

in smokers = 80 × 10
20 × 40

= 1 (95% CI 0.4, 2.5)

in nonsmokers = 10 × 80
40 × 20

= 1 (95% CI 0.4, 2.5)

Smoking is a confounder because it is strongly associated with coffee drinking
(below, left panel) and with MI (below, right panel):

MI and No MI
Combined

Coffee No Coffee

Smokers 120 30
Nonsmokers 30 120

Odds ratio for coffee drinking associated

with smoking = 120 × 120
30 × 30

= 16

Coffee and No Coffee
Combined

MI No MI

Smokers 100 50
Nonsmokers 50 100

Odds ratio for MI associated with

smoking = 100 × 100
50 × 50

= 4
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3. A more complicated situation is interaction. In that case, the association between
coffee drinking and MI differs in smokers and nonsmokers. (In this example, the
association between coffee drinking and MI in the whole study is due entirely to
a strong association in smokers). When interaction is present, the odds ratios in
different strata are different, and must be reported separately:

Smokers

MI No MI

Coffee 50 15
No Coffee 10 33

OR = 50 × 33
15 × 10

= 11 (95% CI, 4.1, 30.6)

Nonsmokers

MI No MI

Coffee 40 45
No Coffee 50 57

OR = 40 × 57
45 × 50

= 1.0 (95% CI, 0.55, 1.9)

APPENDIX 9B

A Simplified Example of Adjustment
Suppose that a study finds two major predictors of the IQ of children: the parental
education level and the child’s blood lead level. Consider the following hypothetical
data on children with normal and high lead levels:

Average Years
of Parental Education

Average IQ
of Child

High lead level 10.0 95
Normal lead level 12.0 110

Note that the parental education level is also associated with the child’s blood
lead level. The question is, ‘‘Is the difference in IQ more than can be accounted for
on the basis of the difference in parental education?’’ To answer this question we look
at how much difference in IQ the difference in parental education levels would be
expected to produce. We do this by plotting parental educational level versus IQ in
the children with normal lead levels (Fig. 9.2).3

The dotted line in Figure 9.2 shows the relationship between the child’s IQ
and parental education in children with normal lead levels; there is an increase in
the child’s IQ of five points for each 2 years of parental education. Therefore, we
can adjust the IQ of the normal lead group to account for the difference in mean
parental education by sliding down the line from point A to point A’. (Because the
group with normal lead levels had 2 more years of parental education on the average,
we adjust their IQs downward by five points to make them comparable in mean
parental education to the high lead group.) This still leaves a 10-point difference in
IQ between points A and B, suggesting that lead has an independent effect on IQ of
this magnitude. Therefore, of the 15-point difference in IQ of children with low and
high lead levels, five points can be accounted for by their parents’ different education
levels and the remaining ten are attributable to the lead exposure.

3This description of analysis of covariance (ANCOVA) is simplified. Actually, parental education is plotted against the child’s IQ
in both the normal and high lead groups, and the single slope that fits both plots the best is used. The model for this form of
adjustment therefore assumes linear relationships between education and IQ in both groups, and that the slopes of the lines in
the two groups are the same.
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FIGURE 9.2. Hypothetical graph of child’s IQ as a linear function (dotted line)
of years of parental education.
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10 Designing a Randomized

Blinded Trial

Steven R. Cummings, Deborah Grady, and Stephen B. Hulley

In clinical trials, the investigator applies an intervention and observes the effect on
outcomes. The major advantage of a trial over an observational study is the ability
to demonstrate causality. In particular, randomly assigning the intervention can
eliminate the influence of confounding variables, and blinding its administration
can eliminate the possibility that the observed effects of the intervention are due to
differential use of other treatments in the treatment and control groups or to biased
ascertainment or adjudication of the outcome.

However, clinical trials are generally expensive, time consuming, address narrow
clinical questions, and sometimes expose participants to potential harm. For these
reasons, trials are best reserved for relatively mature research questions, when
observational studies and other lines of evidence suggest that an intervention might
be effective and safe but stronger evidence is required before it can be approved or
recommended. Not every research question is amenable to the clinical trial design—it
is not feasible to study whether drug treatment of high LDL-cholesterol in children
will prevent heart attacks many decades later. But clinical trial evidence on clinical
interventions should be obtained whenever possible.

This chapter focuses on designing the classic randomized blinded trial (Fig.
10.1), addressing the choice of intervention and control, defining outcomes,
selecting participants, measuring baseline variables, and approaches to random-
izing and blinding. In the next chapter we will cover alternative trial designs and
implementation and analysis issues.

SELECTING THE INTERVENTION AND CONTROL
CONDITIONS

In a clinical trial, the investigator compares the outcome in groups of participants
that receive different interventions. Between-group designs always include a group
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FIGURE 10.1. In a randomized trial, the investigator (a) selects a sample from the population,
(b) measures baseline variables, (c) randomizes the participants (R), (d) applies interventions (one
should be a blinded placebo, if possible), (e) measures outcome variables during follow-up (blinded to
randomized group assignment).

that receives an intervention to be tested, and another that receives either no active
treatment (preferably a placebo) or a comparison treatment.

Choice of Intervention
The choice of intervention is the critical first step in designing a clinical trial. Investi-
gators should consider several issues as they design their interventions, including the
intensity, duration and frequency of the intervention that best balances effectiveness
and safety. It is also important to consider the feasibility of blinding, whether to
treat with one or a combination of interventions, and generalizability to the way
the treatment will be used in practice. If important decisions are uncertain, such as
which dose best balances effectiveness and safety, it is generally best to postpone
major or costly trials until pilot studies have been completed to help resolve the issue.
Choosing the best treatment can be especially difficult in studies that involve years
of follow-up because a treatment that reflects current practice at the outset of the
study may have become outmoded by the end, transforming a pragmatic test into an
academic exercise.

The best balance between effectiveness and safety depends on the condition
being studied. On the one hand, effectiveness is generally the paramount consideration
in designing interventions to treat illnesses that cause severe symptoms and a high
risk of death. Therefore, it may be best to choose the ‘‘highest tolerable dose’’ for
treatment of metastatic cancer. On the other hand, safety should be the primary
criterion for designing interventions to treat less severe conditions or to prevent
illness. Preventive therapy in healthy people should meet stringent tests of safety: if it
is effective, the treatment will prevent the condition in a few persons, but everyone
treated will be at risk of the adverse effects of the drug. In this case, it is generally
best to choose the ‘‘lowest effective dose.’’ If the best dose is not certain based on
prior animal and human research findings, there may be a need for additional trials
that compare the effects of multiple doses on surrogate outcomes (see phase II trials,
Chapter 11).

Sometimes an investigator may decide to compare several promising doses with
a single control group in a major disease endpoint trial. For example, at the time
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the Multiple Outcomes of Raloxifene Evaluation Trial was designed, it was not clear
which dose of raloxifene (60 or 120 mg) was best, so the trial tested two doses of
raloxifene for preventing fractures (1). This is sometimes a reasonable strategy, but
it has its costs: a larger and more expensive trial, and the complexity of dealing with
multiple hypotheses (Chapter 5).

Trials to test single interventions are generally much easier to plan and implement
than those testing combinations of treatments. However, many medical conditions,
such as HIV infection or congestive heart failure, are treated with combinations
of drugs or therapies. The most important disadvantage of testing combinations
of treatments is that the result cannot provide clear conclusions about any one
of the interventions. In the first Women’s Health Initiative trial, for example,
postmenopausal women were treated with estrogen plus progestin therapy or placebo.
The intervention increased the risk of several conditions, such as breast cancer;
however, it was unclear whether the effect was due to the estrogen or the progestin (2).
In general, it is preferable to design trials that have only one major difference between
any two study groups.

The investigator should consider how well the intervention can be incorporated in
practice. Simple interventions are generally better than complicated ones (patients
are more likely to take a pill once a day than two or three times). Complicated
interventions, such as multifaceted counseling about changing behavior, may not be
feasible to incorporate in general practice because they require rare expertise or are
too time consuming or costly. Such interventions are less likely to have clinical impact,
even if a trial proves that they are effective.

Some treatments are generally given in doses that vary from patient to patient.
In these instances, it may be best to design an intervention so that the active drug
is titrated to achieve a clinical outcome such as reduction in the hepatitis C viral
load. To maintain blinding, corresponding changes should be made (by someone not
otherwise involved in the trial) in the ‘‘dose’’ of placebo for a randomly selected or
matched participant in the placebo group.

Choice of Control
The best control group receives no active treatment in a way that can be blinded,
which for medications generally requires a placebo that is indistinguishable from
active treatment. This strategy compensates for any placebo effect of the active in-
tervention (i.e., through suggestion and other nonpharmacologic mechanisms) so
that any outcome difference between study groups can be ascribed to a biological
effect.

The cleanest comparison between the intervention and control groups occurs
when there are no cointerventions—medications, therapies or behaviors (other than
the study intervention) that reduce the risk of developing the outcome of interest.
If participants use effective cointerventions, power will be reduced and the sample
size will need to be larger or the trial longer. In the absence of effective blinding,
the trial protocol must include plans to obtain data to allow statistical adjustment
for differences between the groups in the rate of use of such cointerventions dur-
ing the trial. However, adjusting for such postrandomization differences violates
the intention-to-treat principle and should be viewed as a secondary or explanatory
analysis (Chapter 11).

Often it is not possible to withhold treatments other than the study intervention.
For example, in a trial of a new drug to reduce the risk of myocardial infarction in
persons with known coronary heart disease (CHD), the investigators cannot ethically
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prohibit or discourage participants from taking medical treatments that are indicated
for persons with known CHD, including aspirin, statins and beta-blockers. One
solution is to give standard care drugs to all participants in the trial; although this
approach reduces the event rate and therefore increases the required sample size, it
minimizes the potential for differences in cointerventions between the groups and
tests whether the new intervention improves outcome when given in addition to
standard care.

When the treatment to be studied is a new drug that is believed to be a good
alternative to standard care, one option is to design an equivalence trial in which
new treatments are compared with those already proven effective (see Chapter 11).
When the treatment to be studied is a surgery or other procedure that is so attractive
that prospective participants are reluctant to be randomized to something different,
an excellent approach may be randomization to immediate intervention versus a
wait-list control. This design requires an outcome that can be assessed within a few
months of starting the intervention. It provides an opportunity for a randomized
comparison between the immediate intervention and wait-list control groups during
the first several months, and also for a within-group comparison before and after
the intervention in the wait-list control group (see Chapter 11 for time-series and
cross-over designs).

CHOOSING OUTCOME MEASUREMENTS

The definition of the specific outcomes of the trial influences many other design
components, as well as the cost and even the feasibility of answering the question.
Trials should include several outcome measurements to increase the richness of the
results and possibilities for secondary analyses. However, a single outcome must be
chosen that reflects the main question, allows calculation of the sample size and sets
the priority for efforts to implement the study.

Clinical outcomes provide the best evidence about whether and how to use
treatments. However for outcomes that are uncommon, such as the occurrence of
cancer, trials must generally be large, long, and expensive. As noted in Chapter 6,
outcomes measured as continuous variables, such as quality of life, can generally be
studied with fewer subjects and shorter follow-up times than rates of a dichotomous
clinical outcome, such as recurrence of treated breast cancer.

Intermediate markers, such as bone density, are measurements that are related
to the clinical outcome. Trials that use intermediate outcomes can further our
understanding of pathophysiology and provide information to design the best dose or
frequency of treatment for use in trials with clinical outcomes. The clinical relevance
of trials with intermediate outcomes depends in large part on how accurately changes
in these markers, especially changes that occur due to treatment, represent changes
in the risk or natural history of clinical outcomes. Intermediate markers can be
considered surrogate markers for the clinical outcome to the extent that treatment-
induced changes in the marker consistently predict how treatment changes the clinical
outcome (3). Generally, a good surrogate measures changes in an intermediate factor
in the main pathway that determines the clinical outcome.

HIV viral load is a good surrogate marker because treatments that reduce the
viral load consistently reduce morbidity and mortality in patients with HIV infection.
In contrast, bone mineral density (BMD) is considered a poor surrogate marker (3).
It reflects the amount of mineral in a section of bone, but treatments that improve
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BMD sometimes have little or no effect on fracture risk, and the magnitude of change
in BMD can substantially underestimate how much the treatment reduces fracture
risk (4). The best evidence that a biological marker is a good surrogate comes from
randomized trials of the clinical outcome (fractures) that also measure change in the
marker (BMD) in all participants. If the marker is a good surrogate, then statistical
adjustment for changes in the marker will account for much of the effect of treatment
on the outcome (3).

Number of Outcome Variables
It is often desirable to have several outcome variables that measure different aspects
of the phenomena of interest. In the Heart and Estrogen/progestin Replacement
Study (HERS), CHD events were chosen as the primary endpoint. Nonfatal my-
ocardial infarction, coronary revascularization, hospitalization for unstable angina or
congestive heart failure, stroke and transient ischemic attack, venous thromboembolic
events, and all-cause mortality were all assessed and adjudicated to provide a more
detailed description of the cardiovascular effects of hormone therapy (5). However, a
single primary endpoint (CHD events) was designated for the purpose of planning
the sample size and duration of the study and to avoid the problems of interpreting
tests of multiple hypotheses (Chapter 5).

Adverse Effects
The investigator should include outcome measures that will detect the occurrence
of adverse effects that may result from the intervention. Revealing whether the
beneficial effects of an intervention outweigh the adverse ones is a major goal of
most clinical trials, even those that test apparently innocuous treatments like a health
education program. Adverse effects may range from relatively minor symptoms such
as a mild or transient rash, to serious and fatal complications. The investigator should
consider the problem that the rate of occurrence, the effect of treatment and the
sample size requirements for detecting adverse effects will generally be different from
those for detecting benefits. Unfortunately, rare side effects will usually be impossible
to detect no matter how large the trial and are discovered (if at all) only after an
intervention is in widespread clinical use.

In the early stages of testing a new treatment when potential adverse effects
are unclear, investigators should ask broad, open-ended questions about all types
of potential adverse effects. In large trials, assessment and coding of all potential
adverse events can be very expensive and time consuming, often with a low yield of
important results. Investigators should consider strategies for minimizing this burden
while preserving an adequate assessment of potential harms of the intervention. For
example, in very large trials, common and minor events, such as upper respiratory
infections and gastrointestinal upset, might be recorded in a subset of the participants.
Important potential adverse events or effects that are expected because of previous
research or clinical experience should be ascertained by specific queries. For example,
because rhabdomyolysis is a reported side effect of treatment with statins, the signs
and symptoms of myositis should be queried in any trial of a new statin.

When data from a trial is used to apply for regulatory approval of a new drug,
the trial design must satisfy regulatory expectations for reporting adverse events
(see ‘‘Good Clinical Practices’’ on the U.S. Food and Drug Administration [FDA]
website). Certain disease areas, such as cancer, have established methods for classifying
adverse events (see ‘‘NCI Common Toxicity Criteria’’ on the National Cancer
Institute website).
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SELECTING THE PARTICIPANTS

Chapter 3 discussed how to specify entry criteria defining a target population that is
appropriate to the research question and an accessible population that is practical to
study, how to design an efficient and scientific approach to selecting participants, and
how to recruit them. Here we cover issues that are especially relevant to clinical trials.

Define Entry Criteria
In a clinical trial, inclusion and exclusion criteria have the joint goal of identifying
a population in which it is feasible, ethical and relevant to study the impact of the
intervention on outcomes. Inclusion criteria should produce a sufficient number of
enrollees who have a high enough rate of the primary outcome to achieve adequate
power to find an important effect on the outcome. On the other hand, criteria should
also maximize the generalizability of findings from the trial and ease of recruitment.
For example, if the outcome of interest is a rare event, such as breast cancer, it is
usually necessary to recruit participants who have a high risk of the outcome to reduce
the sample size and follow-up time to feasible levels. On the other hand, narrowing
the inclusion criteria to higher-risk women limits the generalizability of the results
and makes it more difficult to recruit participants into the trial.

To plan the right sample size, the investigator must have reliable estimates of
the rate of the primary outcome in people who might be enrolled. These estimates
can be based on data from vital statistics, longitudinal observational studies, or rates
observed in the untreated group in trials with outcomes similar to those in the planned
trial. For example, expected rates of breast cancer in postmenopausal women can be
estimated from cancer registry data. The investigator should keep in mind, however,
that screening and healthy volunteer effects generally mean that event rates among
those who qualify and agree to enter clinical trials are lower than in the general
population; it may be preferable to obtain rates of breast cancer from the placebo
group of other trials with similar inclusion criteria.

Including participants with a high risk of the outcome can decrease the number
of subjects needed for the trial. If risk factors for the outcome have been established,
then the selection criteria can be designed to include participants who have a minimum
estimated risk of the outcome of interest. The Raloxifene Use for The Heart trial,
designed to test the effect of raloxifene for prevention of cardiovascular disease (CVD)
and breast cancer, enrolled women who were at increased risk of CVD based on a
combination of risk factors (6). Another way to increase the rate of events is to limit
enrollment to people who already have the disease. The Heart and Estrogen/Progestin
Replacement Study included 2,763 women who already had CHD to test whether
estrogen plus progestin reduced the risk of new CHD events (5). This approach
was much less costly than the Women’s Health Initiative trial of the same research
question in women without CHD, which required about 17,000 participants (7).

Additionally, a trial can be smaller and shorter if it includes people who are likely
to have the greatest benefit from the treatment. For example, tamoxifen blocks
the binding of estradiol to its receptor and decreases the risk of breast cancer that is
estrogen receptor positive but not that of cancer that is estrogen receptor negative (8).
Therefore, a trial testing the effect of tamoxifen on the risk of breast cancer would be
somewhat smaller and shorter if the selection criteria specify participants at high risk
of estrogen receptor–positive breast cancer.
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Although probability samples of general populations confer advantages in obser-
vational studies, this type of sampling is generally not feasible and has limited value for
randomized trials. Inclusion of participants with diverse characteristics will increase
the confidence that the results of a trial apply broadly. However, setting aside issues
of adherence to randomized treatment, it is generally true that results of a trial done
in a convenience sample (e.g., women with CHD who respond to advertisements) will
be similar to results obtained in probability samples of eligible people (all women with
CHD).

Stratification by a characteristic, such as racial group, allows investigators to
enroll a desired number of participants with a characteristic that may have an influence
on the effect of the treatment or its generalizability. Recruitment to a stratum is
generally closed when the goal for participants with that characteristic has been
reached.

Exclusion criteria should be parsimonious because unnecessary exclusions may
diminish the generalizability of the results, make it more difficult to recruit the
necessary number of participants, and increase the complexity and cost of recruitment.
There are five reasons for excluding people from a clinical trial (Table 10.1).

The treatment may be unsafe in people who are susceptible to known or suspected
adverse effects of the active treatment. For example, myocardial infarction is a rare
adverse effect of treatment with sildenafil (Viagra). Therefore, trials of Viagra to
treat painful vasospasm in patients with Raynaud’s disease should exclude patients
who have CHD (9). Conversely receiving placebo may be considered unsafe for
some participants. For example, bisphosphonates are known to be so beneficial in
women with vertebral fractures that it would be unacceptable to enter them in a
placebo-controlled trial of a new treatment for osteoporosis unless bisphosphonates
could also be provided for all trial participants. Persons in whom the active treatment

TABLE 10.1 Reasons for Excluding People from a Clinical Trial

Reason
Example (A trial of raloxifene vs. placebo
to prevent heart disease)

1. A study treatment would be harmful
• Unacceptable risk of adverse reaction to

active treatment
• Unacceptable risk of assignment to

placebo

2. Active treatment is unlikely to be effective
• At low risk for the outcome
• Has a type of disease that is not likely to

respond to treatment
• Taking a treatment that is likely to interfere

with the intervention
3. Unlikely to adhere to the intervention
4. Unlikely to complete follow-up

5. Practical problems with participating in the
protocol

Prior venous thromboembolic event (raloxifene
increases risk of venous thromboembolic events)

Recent estrogen receptor–positive breast cancer
(treatment with an anti-estrogen is an effective
standard of care)

Low coronary heart disease risk factors

Taking estrogen therapy (which competes with
raloxifene)

Poor adherence during run-in
Plans to move before trial ends
Short life expectancy because of a serious illness
Unreliable participation in visits before

randomization
Impaired mental state that prevents accurate

answers to questions
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is unlikely to be effective should be excluded, as well as those who are unlikely
to be adherent to the intervention or unlikely to complete follow-up. It is wise to
exclude people who are not likely to contribute a primary outcome to the study
(e.g., because they will move during the period of follow-up). Occasionally, practical
problems such as impaired mental status that makes it difficult to follow instructions
justify exclusion. Investigators should carefully weigh potential exclusion criteria
that apply to many people (e.g., diabetes or upper age limits) as these may have a
large impact on the feasibility and costs of recruitment and the generalizability of
results.

Design an Adequate Sample Size and Plan the Recruitment Accordingly
Trials with too few participants to detect substantial effects are wasteful, unethical,
and may produce misleading conclusions (10). Estimating the sample size is one of
the most important early parts of planning a trial (Chapter 6). Outcome rates in
clinical trials are commonly lower than estimated, primarily due to screening and
volunteer bias. Recruitment for a trial is usually more difficult than recruitment for
an observational study. For these reasons, the investigator should plan an adequate
sample from a large accessible population, and enough time and money to get the
desired sample size when (as usually happens) the barriers to doing so turn out to be
greater than expected.

MEASURING BASELINE VARIABLES

To facilitate contacting participants who are lost to follow-up, it is important to record
the names, phone numbers, addresses, and e-mail addresses of two or three friends
or relatives who will always know how to reach the participant. It is also valuable
to record Social Security numbers or other national I.D. numbers. These can be
used to determine the vital status of participants (through the National Death Index)
or to detect key outcomes using health records (e.g., health insurance systems).
However, this is confidential ‘‘protected personal health information’’ that must be
kept confidential and should not accompany data that are sent to a coordinating
center or sponsoring institution.

Describe the Participants
Investigators should collect enough information (e.g., age, gender, and measurements
of the severity of disease) to help others judge the generalizability of the findings.
These measurements also provide a means for checking on the comparability of the
study groups at baseline; the first table of the final report of a clinical trial typically
compares the levels of baseline characteristics in the study groups. The goal is to
make sure that differences in these levels do not exceed what might be expected from
the play of chance, which might suggest a technical error or bias in carrying out the
randomization.

Measure Variables that are Risk Factors for the Outcome or can be
Used to Define Subgroups
It is a good idea to measure baseline variables that are likely to be strong predictors
of the outcome (e.g., smoking habits of the spouse in a trial of a smoking intervention).
This allows the investigator to study secondary research questions, such as predictors
of the outcomes. In small trials where randomization is more prone to produce chance
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maldistributions of baseline characteristics, measurement of important predictors of
the outcome permits statistical adjustment of the primary randomized comparison
to reduce the influence of these chance maldistributions on the outcome of the
trial. Baseline measurements of potential predictors of the outcome also allow the
investigator to examine whether the intervention has different effects in subgroups
classified by baseline variables, an uncommon but important phenomenon termed
effect modification or interaction (Chapter 9). For example, bone density measured
at baseline in the Fracture Intervention Trial led to the finding that treatment with
alendronate significantly decreased the risk of nonspine fractures in women with
very low bone density (osteoporosis) but had no effect in women with higher bone
density (11). Importantly, a specific test for the interaction was of bone density and
treatment effect was statistically significant (P = 0.02).

Measure Baseline Value of the Outcome Variable
If outcomes include change in a variable, the outcome variable must be measured at
the beginning of the study in the same way that it will be measured at the end. In
studies that have a dichotomous outcome (incidence of CHD, for example) it may
be important to demonstrate by history and electrocardiogram that the disease is
not present at the outset. In studies that have a continuous outcome variable (effects
of antihypertensive drugs on blood pressure) the best measure is generally a change
in the outcome over the course of the study. This approach usually minimizes the
variability in the outcome between study participants and offers more power than
simply comparing blood pressure values at the end of the trial. Similarly, it may also
be useful to measure secondary outcome variables, and outcomes of planned ancillary
studies, at baseline.

Be Parsimonious
Having pointed out all these uses for baseline measurements, we should stress
that the design of a clinical trial does not require that any be measured, because
randomization eliminates the problem of confounding by factors that are present
at the outset. Making a lot of measurements adds expense and complexity. In a
randomized trial that has a limited budget, time and money are usually better spent
on things that are vital to the integrity of the trial, such as the adequacy of the sample
size, the success of randomization and blinding, and the completeness of follow-up.
Yusuf et al. have promoted the use of large trials with very few measurements (12).

Establish Banks of Materials
Storing images, sera, DNA, and other biologic specimens at baseline will allow
subsequent measurement of biological effects of the treatment, biological markers
that predict the outcome, and factors (such as genotype) that might identify people
who respond well or poorly to the treatment. Stored specimens can also be a rich
resource to study other research questions not directly related to the main outcome.

RANDOMIZING AND BLINDING

The third step in Figure 10.1 is to randomly assign the participants to two or more
groups. In the simplest design, one group receives an active treatment intervention and
the other receives a placebo. The random allocation of participants to one or another of
the study groups establishes the basis for testing the statistical significance of differences
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between these groups in the measured outcome. Random assignment provides that
age, sex, and other prognostic baseline characteristics that could confound an observed
association (even those that are unknown or unmeasured) will be distributed equally,
except for chance variation, among the randomized groups.

Do a Good Job of Random Assignment
Because randomization is the cornerstone of a clinical trial, it is important that it
be done correctly. The two most important features are that the procedure truly
allocates treatments randomly and that the assignments are tamperproof so that
neither intentional nor unintentional factors can influence the randomization.

Ordinarily, the participant completes the baseline examinations, is found eligible
for inclusion, and gives consent to enter the study before randomization. He is
then randomly assigned by computerized algorithm or by applying a set of random
numbers, which are typically computer-generated. Once a list of the random order of
assignment to study groups is generated, it must be applied to participants in strict
sequence as they enter the trial.

It is essential to design the random assignment procedure so that members of the
research team who have any contact with the study participants cannot influence the
allocation. For example, random treatment assignments can be placed in advance in a
set of sealed envelopes by someone who will not be involved in opening the envelopes.
Each envelope must be numbered (so that all can be accounted for at the end of
the study), opaque (to prevent transillumination by a strong light), and otherwise
tamperproof. When a participant is randomized, his name and the number of the
next unopened envelope are first recorded in the presence of a second staff member
and both staff sign the envelope; then the envelope is opened and the randomization
number contained therein assigned to the participant.

Multicenter trials typically use a separate tamperproof randomization facility that
the trial staff contact when an eligible participant is ready to be randomized. The staff
member provides the name and study ID of the new participant. This information is
recorded and the treatment group is then randomly assigned by providing a treatment
assignment number linked to the interventions. Treatment can also be randomly
assigned by computer programs at a single research site as long as these programs
are tamperproof. Rigorous precautions to prevent tampering with randomization are
needed because investigators sometimes find themselves under pressure to influence
the randomization process (e.g., for an individual who seems particularly suitable for
an active treatment group in a placebo-controlled trial).

Consider Special Randomization Techniques
The preferred approach is typically simple randomization of individual participants in
an equal ratio to each intervention group. Trials of small to moderate size will have a
small gain in power if special randomization procedures are used to balance the study
groups in the numbers of participants they contain (blocked randomization) and in
the distribution of baseline variables known to predict the outcome (stratified blocked
randomization).

Blocked randomization is a commonly used technique to ensure that the number
of participants is equally distributed among the study groups. Randomization is done
in ‘‘blocks’’ of predetermined size. For example, if the block size is six, randomization
proceeds normally within each block until the third person is randomized to one
group, after which participants are automatically assigned to the other group until
the block of six is completed. This means that in a study of 30 participants exactly 15
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will be assigned to each group, and in a study of 33 participants, the disproportion
could be no greater than 18:15. Blocked randomization with a fixed block size is less
suitable for nonblinded studies because the treatment assignment of the participants
at the end of each block could be predicted and manipulated. This problem can be
minimized by varying the size of the blocks randomly (ranging, for example, from
four to eight) according to a schedule that is not known to the investigator.

Stratified blocked randomization ensures that an important predictor of the
outcome is more evenly distributed between the study groups than chance alone
would dictate. In a trial of the effect of a drug to prevent fractures, having a prior
vertebral fracture is such a strong predictor of outcome and response to treatment
that it may be best to ensure that similar numbers of people who have vertebral
fractures are assigned to each group. This can be achieved by dividing participants
into two groups—those with and those without vertebral fractures—as they enroll in
the trial and then carrying out blocked randomization separately in each of these two
‘‘strata.’’ Stratified blocked randomization can slightly enhance the power of a small
trial by reducing the variation in outcome due to chance disproportions in important
baseline variables. It is of little benefit in large trials (more than 1,000 participants)
because chance assignment ensures nearly even distribution of baseline variables.
An important limitation of stratified blocked randomization is the small number of
baseline variables, not more than two or three, that can be balanced by this technique.

Randomizing equal numbers of participants to each group maximizes study
power, but unequal allocation of participants to treatment and control groups
may sometimes be appropriate (13). Occasionally, investigators increase the ratio of
active to placebo treatment to make the trial more attractive to potential subjects who
would like a greater chance of receiving active treatment if they enroll, or decrease the
ratio (as in the Women’s Health Initiative low-fat diet trial (14)) to save money if the
intervention is expensive. A trial comparing multiple active treatments to one control
group may increase the power of those comparisons by enlarging the control group
(as in the Coronary Drug Project trial (15)). In this case there is no clear way to pick
the best proportions to use, and disproportionate randomization might complicate
the process of obtaining informed consent. Because the advantages are marginal (the
effect of even a 2:1 disproportion on power is surprisingly modest (16)), the best
decision is usually to assign equal numbers to each group.

Randomization of matched pairs is a strategy for balancing baseline confound-
ing variables that requires selecting pairs of subjects who are matched on important
factors like age and sex, then randomly assigning one member of each pair to each
study group. A drawback of randomizing matched pairs is that it complicates recruit-
ment and randomization, requiring that an eligible participant wait for randomization
until a suitable match has been identified. In addition, matching is generally not
necessary in large trials in which random assignment prevents confounding. However,
a particularly attractive version of this design can be used when the circumstances per-
mit a contrast of treatment and control effects in two parts of the same individual. In
the Diabetic Retinopathy Study, for example, each participant had one eye randomly
assigned to photocoagulation treatment while the other served as a control (17).

Blinding
Whenever possible, the investigator should design the interventions in such a fashion
that the study participants, staff who have contact with them, persons making
laboratory measurements, and those adjudicating outcomes have no knowledge of
the study group assignment. When it is not possible to blind all of these individuals, it is
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TABLE 10.2 In a Randomized Blinded Trial, Randomization Eliminates
Confounding by Baseline Variables and Blinding Eliminates
Confounding by CoInterventions

Explanation
for Association

Strategy to Rule Out
Rival Explanation

1. Chance Same as in observational studies
2. Bias Same as in observational studies
3. Effect—Cause (Not a possible explanation in a trial)

Prerandomization confounding
variables

Randomization

4. Confounding

Postrandomization confounding
variables (cointerventions)

Blinding

5. Cause—Effect

highly desirable to blind as many as possible (always, for example, blinding laboratory
personnel). In a randomized trial, blinding is as important as randomization: it
prevents bias due to use of cointerventions and biased ascertainment of outcomes.

Randomization only eliminates the influence of confounding variables that are
present at the time of randomization; it does not eliminate differences that develop
between the groups during follow-up (Table 10.2). In an unblinded study the
investigator or study staff may give extra attention or treatment to participants he
knows are receiving the active drug, and this ‘‘cointervention’’ may be the actual
cause of any difference in outcome that is observed between the groups. For example,
in an unblinded trial of the effect of exercise to prevent myocardial infarction, the
investigator’s eagerness to find a benefit might lead him to suggest that participants
in the exercise group stop smoking. Cointerventions can also affect the control group
if, for example, participants who know that they are receiving placebo seek out other
treatments that affect the outcome. Concern by a participant’s family or private
physician might also lead to effective cointerventions if the study group is not blinded.
Cointerventions that are delivered similarly in both groups may decrease the power
of the study by decreasing outcome rates, but cointerventions that affect one group
more than the other can cause bias in either direction.

The other important value of blinding is to prevent biased ascertainment and
adjudication of outcome. In an unblinded trial, the investigator may be tempted
to look more carefully for outcomes in the untreated group or to diagnose the
outcome more frequently. For example, in an unblinded trial of estrogen therapy,
the investigators may be more likely to ask women in the active treatment group
about pain or swelling in the calf and to order ultrasound or other tests to make the
diagnosis of deep vein thrombosis.

After a possible outcome event has been ascertained, it is important that personnel
who will adjudicate the outcome are blinded. Results of the Canadian Cooperative
Multiple Sclerosis trial nicely illustrate the importance of blinding in unbiased out-
come adjudication (18). Persons with multiple sclerosis were randomly assigned to
combined plasma exchange, cyclophosphamide and prednisone, or to sham plasma
exchange and placebo medications. At the end of the trial, the severity of multiple
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sclerosis was assessed using a structured examination by neurologists blinded to
treatment assignment and again by neurologists who were unblinded. Therapy was
not effective based on the assessment of the blinded neurologists, but was statistically
significantly effective based on the assessment of the unblinded neurologists.

Blinded assessment of outcome may not be important if the outcome of the trial is
a ‘‘hard’’ outcome such as death, about which there is no uncertainty or opportunity
for biased assessment. Most other outcomes, such as cause-specific death, disease
diagnosis, physical measurements, questionnaire scales, and self-reported conditions,
are susceptible to biased ascertainment.

After the study is over, it is a good idea to assess whether the participants and
investigators were unblinded by asking them to guess which treatment the participant
was assigned to; if a higher than expected proportion guesses correctly, the published
discussion of the findings should include an assessment of the potential biases that
partial unblinding may have caused.

What to do When Blinding is Difficult or Impossible. In some cases blinding is
difficult or impossible, either for technical or ethical reasons. For example, it is
difficult to blind participants if they are assigned to an educational, dietary or exercise
intervention. However, the control group in such studies might receive a different form
of education, diet or exercise of a type and intensity unlikely to be effective. Surgical
interventions often cannot be blinded because it may be unethical to perform sham
surgery in the control group. However, surgery is always associated with some risk, so it
is very important to determine if the procedure is truly effective. For example, a recent
randomized trial found that arthroscopic debridement of the cartilage of the knee was
no more effective than sham arthroscopy for relieving osteoarthritic knee pain (19).
In this case, the risk to participants in the control group may have been outweighed
if thousands of patients were prevented from undergoing an ineffective procedure.

If the interventions cannot be blinded, the investigator should limit and stan-
dardize other potential cointerventions as much as possible and blind study staff who
ascertain and adjudicate the outcomes. For example, an investigator testing the effect
of yoga for relief of hot flashes could specify a precise regimen of yoga sessions in
the treatment group and general relaxation sessions of equal duration in the control
group. To minimize other differences between the groups, he could instruct both
yoga and control participants to refrain from starting new recreational, exercise or
relaxation activities or other treatments for hot flushes until the trial has ended. Also,
study staff who collect information on the severity of hot flushes could be different
from those who provide yoga training.

SUMMARY

1. The choice and dose of intervention is a difficult decision that balances effec-
tiveness and safety; other considerations include relevance to clinical practice,
simplicity, suitability for blinding, and feasibility of enrolling subjects.

2. The best comparison group is a placebo control that allows participants, investi-
gators and study staff to be blinded.

3. Clinically relevant outcome measures such as pain, quality of life, occurrence
of cancer, and death are the most meaningful outcomes of trials. Intermediary
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markers, such as HIV viral load, are valid surrogate markers for clinical outcomes
to the degree that treatment-induced changes in the marker consistently predict
changes in the clinical outcome.

4. All clinical trials should include measures of potential adverse effects of the
intervention.

5. The criteria for selecting study participants should identify those who are likely
to benefit and not be harmed by treatment, easy to recruit, and likely to adhere
to treatment and follow-up protocols. Choosing participants at high risk of an
uncommon outcome can decrease sample size and cost, but may make recruitment
more difficult and decrease generalizability of the findings.

6. Baseline variables should be measured parsimoniously to track the participants,
describe their characteristics, measure risk factors for and baseline values of the
outcome, and enable later examination of disparate intervention effects in various
subgroups (interactions); serum, genetic material, and so on should be stored for
later analysis.

7. Randomization, which eliminates bias due to baseline confounding variables,
should be tamperproof; matched pair randomization is an excellent design when
feasible, and in small trials stratified blocked randomization can reduce chance
maldistributions of key predictors.

8. Blinding the intervention is as important as randomization and serves to control
cointerventions and biased outcome ascertainment and adjudication.
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11 Alternative Trial Designs

and Implementation Issues

Deborah Grady, Steven R. Cummings, and Stephen B. Hulley

In the last chapter, we discussed the classic randomized, blinded, parallel group trial:
how to select the intervention, choose outcomes, select participants, measure baseline
variables, randomize, and blind. In this chapter, we describe alternative clinical trial
designs and address the conduct of clinical trials, including interim monitoring
during the trial.

ALTERNATIVE CLINICAL TRIAL DESIGNS

Other Randomized Designs
There are a number of variations on the classic parallel group randomized trial that
may be useful when the circumstances are right.

The factorial design aims to answer two (or more) separate research questions
in a single cohort of participants (Fig. 11.1). A good example is the Women’s Health
Study, which was designed to test the effect of low-dose aspirin and vitamin E on risk
for cardiovascular events among healthy women (1). The participants were randomly
assigned to four groups, and two hypotheses were tested by comparing two halves
of the study cohort. First, the rate of cardiovascular events in women on aspirin is
compared with women on aspirin placebo (disregarding the fact that half of each of
these groups received vitamin E); then the rate of cardiovascular events in those on
vitamin E is compared with all those on vitamin E placebo (now disregarding the
fact that half of each of these groups received aspirin). The investigators have two
complete trials for the price of one.

The factorial design can be very efficient. For example, the Women’s Health
Initiative randomized trial was able to test the effect of three interventions (hormone
therapy, low-fat diet and calcium plus vitamin D) on a number of outcomes in
one cohort (2). A limitation is the possibility of interactions between the effects of
the treatments on the outcomes. For example, if the effect of aspirin on risk for
cardiovascular disease is different in women treated with vitamin E compared to those

163



164 Study Designs

Population

Sample

Disease
No

Disease

Disease
No

Disease

Disease
No

Disease

Disease
No

Disease

R

THE FUTURETHE PRESENT

Drug A &
Drug B

Drug A &
Placebo B

Placebo A &
Drug B

Placebo A &
Placebo B

FIGURE 11.1. In a factorial randomized trial, the investigator (a) selects a sample from the population,
(b) measures baseline variables, (c) randomly assigns two active interventions and their controls to four
groups as shown, (d) applies interventions, (e) measures outcome variables during follow-up,
(f) analyzes the results, first combining the two drug A groups to be compared with the two placebo A
groups and then combining the two drug B groups to be compared with the two placebo B groups.

not treated with vitamin E, an interaction exists and the effect of aspirin would have
to be calculated separately in these two groups. This would reduce the power of these
comparisons, because only half of the participants would be included in each analysis.
Factorial designs can actually be used to study such interactions, but trials designed to
test interactions are more complicated and difficult to implement, larger sample sizes
are required, and the results can be hard to interpret. Other limitations of the factorial
design are that the same study population must be appropriate for each intervention
and multiple treatments may interfere with recruitment and adherence.

Group or cluster randomization requires that the investigator randomly assign
naturally occurring groups or clusters of participants to the intervention groups rather
than assign individuals. A good example is a trial that enrolled players on 120 college
baseball teams, randomly allocated half of the teams to an intervention to encourage
cessation of spit-tobacco use, and observed a significantly lower rate of spit-tobacco
use among players on the teams that received the intervention compared to control
teams (3). Applying the intervention to groups of people may be more feasible
and cost effective than treating individuals one at a time, and it may better address
research questions about the effects of public health programs in the population. Some
interventions, such as a low-fat diet, are difficult to implement in only one member of
a family. Similarly, when participants in a natural group are randomized individually,
those who receive the intervention are likely to discuss or share the intervention
with family members, colleagues or acquaintances who have been assigned to the
control group. For example, a clinician in a group practice who is randomly assigned
to an educational intervention is very likely to discuss this intervention with his
colleagues. In the cluster randomization design, the units of randomization and
analysis are groups, not individuals. Therefore, the effective sample size is smaller
than the number of individual participants and power is diminished. In fact, the
effective sample size depends on the correlation of the effect of the intervention
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among participants in the clusters and is somewhere between the number of clusters
and the number of participants (4). Another drawback is that sample size estimation
and data analysis are more complicated in cluster randomization designs than for
individual randomization (5).

In equivalence trials, an intervention is compared to an active control. Equiva-
lence trials may be necessary when there is a known effective treatment for a condition,
or an accepted ‘‘standard of care.’’ In this situation, it may be unethical to assign
participants to placebo treatment. For example, because bisphosphonates effectively
prevent osteoporotic fractures in women at high risk, new drugs should be compared
against or added to this standard of care. In general, there should be strong evidence
that the active comparison treatment is effective for the types of participants who will
be enrolled in the trial.

The objective of equivalence trials is to prove that the new intervention is at least as
effective as the established one. It is impossible to prove that two treatments are exactly
equivalent because the sample size would be infinite. Therefore, the investigator sets
out to prove that the difference between the new treatment and the established
treatment is no more than a defined amount. If the acceptable difference between the
new and the established treatment is small, the sample size for an equivalence trial
can be large—much larger than for a placebo-controlled trial. However, there is little
clinical reason to test a new therapy if it does not have significant advantages over an
established treatment, such as less toxicity or cost, or greater ease of use. Depending
on how much advantage the new treatment is judged to have, the allowable difference
between the efficacy of the new treatment and the established treatment may be
substantial. In this case, the sample size estimate for an equivalence trial may be
similar to that for a placebo-controlled trial.

An important problem with equivalence trials is that the traditional roles of the
null and alternative hypotheses are reversed. The null hypothesis for equivalence trials
is that the effects of the two treatments are not more different than a prespecified
amount; the alternative hypothesis is that the difference does exceed this amount. In
this case, failure to reject the null hypothesis results in accepting the hypothesis that
the two treatments are equal. Inadequate sample size, poor adherence to the study
treatments and large loss to follow-up all reduce the power of the study to reject the
null hypothesis in favor of the alternative. Therefore, an inferior new treatment may
appear to be equivalent to the standard when in reality the findings just represent an
underpowered and poorly done study.

Nonrandomized Between-Group Designs
Trials that compare groups that have not been randomized are far less effective
than randomized trials in controlling for the influence of confounding variables.
Analytic methods can adjust for baseline factors that are unequal in the two study
groups, but this strategy does not deal with the problem of unmeasured confounding.
When the findings of randomized and nonrandomized studies of the same research
question are compared, the apparent benefits of intervention are much greater in the
nonrandomized studies, even after adjusting statistically for differences in baseline
variables (5). The problem of confounding in nonrandomized clinical studies can be
serious and not fully removed by statistical adjustment (6).

Sometimes participants are allocated to study groups by a pseudorandom mech-
anism. For example, every other subject (or every subject with an even hospital record
number) may be assigned to the treatment group. Such designs sometimes offer
logistic advantages, but the predictability of the study group assignment permits the
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investigator to tamper with it by manipulating the sequence or eligibility of new
subjects.

Participants are sometimes assigned to study groups by the investigator according
to certain specific criteria. For example, patients with diabetes may be allocated to
receive either insulin four times a day or long-acting insulin once a day according
to their willingness to accept four daily injections. The problem with this design is
that those willing to take four injections per day might be more compliant with other
health advice, and this might be the cause of any observed difference in the outcomes
of the two treatment programs.

Nonrandomized designs are sometimes chosen in the mistaken belief that they
are more ethical than randomization because they allow the participant or clinician
to choose the intervention. In fact, studies are only ethical if they have a reasonable
likelihood of producing the correct answer to the research question, and randomized
studies are more likely to lead to a conclusive and correct result than nonrandomized
designs. Moreover, the ethical basis for any trial is the uncertainty as to whether the
intervention will be beneficial or harmful. This uncertainty, termed equipoise, means
that an evidence-based choice of interventions is not possible and justifies random
assignment.

Within-Group Designs
Designs that do not include randomization can be useful options for some types
of questions. In a time-series design, measurements are made before and after
each participant receives the intervention (Fig. 11.2). Therefore, each participant
serves as his own control to evaluate the effect of treatment. This means that innate
characteristics such as age, sex, and genetic factors are not merely balanced (as they
are in between-group studies) but actually eliminated as confounding variables.

The major disadvantage of within-group designs is the lack of a concurrent control
group. The apparent efficacy of the intervention might be due to learning effects
(participants do better on follow-up cognitive function tests because they learned
from the baseline test), regression to the mean (participants who were selected for
the trial because they had high blood pressure at baseline are found to have lower
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FIGURE 11.2. In a time-series trial, the investigator (a) selects a sample from the population,
(b) measures baseline and outcome variables, (c) applies the intervention to the whole cohort,
(d) follows up the cohort and measures outcome variables again, (e) (optional) removes the
intervention and measures outcome variables again, and so on.
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blood pressure at follow-up simply due to random variation in blood pressure), or
secular trends (upper respiratory infections are less frequent at follow-up because
the trial started during flu season). Within-group designs sometimes use a strategy
of repeatedly starting and stopping the treatment. If repeated onset and offset of the
intervention produces similar patterns in the outcome, this provides strong support
that these changes are due to the treatment. This approach is only useful when the
outcome variable responds rapidly and reversibly to the intervention (e.g., the effect
of a statin on LDL-cholesterol level). The design has a clinical application in the
so-called ‘‘N-of-one’’ study in which an individual patient can alternate between
active and inactive versions of a drug (using identical-appearing placebo prepared by
the local pharmacy) to detect his particular response to the treatment (7).

The crossover design has features of both within- and between-group designs
(Fig. 11.3). Half of the participants are randomly assigned to start with the control
period and then switch to active treatment; the other half begin with the active
treatment and then switch to control. This approach (or the Latin square for more than
two treatment groups) permits between-group, as well as within-group analyses. The
advantages of this design are substantial: it minimizes the potential for confounding
because each participant serves as his own control and the paired analysis substantially
increases the statistical power of the trial so that it needs fewer participants. However,
the disadvantages are also substantial: a doubling of the duration of the study, and the
added complexity of analysis and interpretation created by the problem of potential
carryover effects. A carryover effect is the residual influence of the intervention on the
outcome during the period after it has been stopped—blood pressure not returning
to baseline levels for months after a course of diuretic treatment, for example. To
reduce the carryover effect, the investigator can introduce an untreated ‘‘washout’’
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FIGURE 11.3. In a crossover randomized trial, the investigator (a) selects a sample from the
population, (b) measures baseline and outcome variables, (c) randomizes the participants (R),
(d) applies interventions, (e) measures outcome variables during follow-up, (f) allows washout period
to reduce carryover effect, (g) applies the intervention to former placebo group and placebo to former
intervention group, (h) measures outcome variables again at the end of follow-up.
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period between treatments with the hope that the outcome variable will return to
normal before starting the next intervention, but it is difficult to know whether all
carryover effects have been eliminated. In general, crossover studies are chiefly a good
choice when the number of study subjects is limited and the outcome responds rapidly
and reversibly to an intervention.

A variation on the crossover design may be appropriate when participants are
randomly assigned to usual care or to a very appealing intervention (such as weight
loss, yoga or elective surgery). Participants assigned to usual care may be provided the
active intervention at the end of the parallel, two-group period, making enrollment
much more attractive. The outcome can be measured at the end of the intervention
period in this group, providing within group crossover data on the participants who
receive the delayed intervention.

Trials for Regulatory Approval of New Interventions
Many trials are done to test the effectiveness and safety of new treatments that might
be considered for approval for marketing by the U.S. Food and Drug Administration
(FDA) or another international regulatory body. Trials are also done to determine
whether drugs that have FDA approval for one condition might be approved for
the treatment or prevention of other conditions. The design and conduct of these
trials is generally the same as for other trials, but regulatory requirements must be
considered.

The FDA publishes general and specific guidelines on how such trials should be
conducted (search for ‘‘FDA’’ on the web). It would be wise for investigators and
staff conducting trials with the goal of obtaining FDA approval of a new medication
or device to seek specific training on these general guidelines, called ‘‘Good Clinical
Practice.’’ In addition, the FDA provides specific guidelines for studies of certain
outcomes. For example, studies designed to obtain FDA approval of treatments for
hot flashes in menopausal women must currently include participants with at least
seven hot flashes per day or 50 per week. FDA guidelines are regularly updated and
similar guidelines are available from international regulatory agencies.

Trials for regulatory approval of new treatments are generally described by phase.
This system refers to an orderly progression in the testing of a new treatment, from
experiments in animals (preclinical) and initial unblinded, uncontrolled treatment of
a few human volunteers to test safety (phase I), to small randomized blinded trials that
test the effect of a range of doses on side effects and clinical outcomes (or surrogate
outcomes) (phase II), to randomized trials large enough to test the hypothesis that
the treatment improves the targeted condition (such as blood pressure) or reduces the
risk of disease (such as stroke) with acceptable safety (phase III) (Table 11.1). Phase
IV refers to large studies (which may or may not be randomized trials) conducted after
a drug is approved. These studies are often conducted (and financed) by marketing
departments of pharmaceutical companies with the goals of assessing the rate of
serious side effects when used in large populations and identifying additional uses of
the drug that might be approved by the FDA.

Pilot Clinical Trials
Designing and conducting a successful clinical trial requires extensive information on
the type, dose and duration of the intervention, the likely effect of the intervention on
the outcome, potential adverse effects and the feasibility of recruiting, randomizing
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TABLE 11.1 Stages in Testing New Therapies

Preclinical Studies in cell cultures and animals

Phase I Unblinded, uncontrolled studies in a few volunteers to test safety

Phase II Relatively small randomized blinded trials to test tolerability and
different intensity or dose of the intervention on surrogate or clinical
outcomes

Phase III Relatively large randomized blinded trials to test the effect of the
therapy on clinical outcomes

Phase IV Large trials or observational studies conducted after the therapy
has been approved by the FDA to assess the rate of serious side
effects and evaluate additional therapeutic uses

and maintaining participants in the trial. Often, the only way to obtain some of this
information is to conduct a good pilot study.

Pilot studies vary from a brief test of the feasibility of recruitment to a full-scale
pilot in hundreds of participants. Pilot studies should be as carefully planned as
the main trial, with clear objectives and methods. Many pilot studies are focused
primarily on determining the feasibility, time required and cost of recruiting
adequate numbers of eligible participants, and discovering if they are willing to
accept randomization and can comply with the intervention. Pilot studies may also be
designed to demonstrate that planned measurements, data collection instruments and
data management systems are feasible and efficient. For pilot trials focused primarily
on feasibility, a control group is generally not included.

An important goal of many pilot studies is to define the optimal intervention—the
frequency, intensity and duration of the intervention that will result in minimal toxicity
and maximal effectiveness. Phase I and II studies can be viewed as pilot studies with
these goals.

Another important goal of pilot studies is to provide parameters to allow more
accurate estimation of sample size. Sound estimates of the rate of the outcome or
mean outcome measure in the placebo group, the effect of the intervention on the
main outcome (effect size), and the statistical variability of this outcome are crucial
to planning the sample size. In some situations, an estimate of the effect size and
its variability can be achieved by delivering the intervention to all pilot subjects. For
example, if it is known that a surgical procedure results in a certain volume of blood
loss, evaluating the amount of blood loss in a small group of pilot study participants
who undergo a new procedure might provide a good estimate of the effect size.
However, if there is likely to be a placebo effect, it may be better to randomize pilot
participants to receive the new intervention or placebo. For example, to obtain an
estimate of the effect of a new treatment for pain related to dental extractions, the fact
that pain responds markedly to placebo treatment would result in a biased estimate of
effect if no placebo group is included.

Many trials fall short of estimated power not because the effect of the intervention
is less than anticipated, but because the rate of outcome events in the placebo group is
much lower than expected. This ‘‘screening bias’’ likely occurs because persons who
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fit the enrollment criteria for a clinical trial and agree to be randomized are healthier
than the general population with the condition of interest. Therefore, in some trials,
it is crucial to determine the rate of the outcome in the placebo group, which can
only be done by randomizing participants to placebo in a pilot study.

A pilot study should have a short but complete protocol (approved by the
Institutional Review Board), data collection forms and analysis plans. Variables
should include the typical baseline measures, predictors and outcomes included in a
clinical trial, but also estimates of the number of subjects available or accessible for
recruitment, the number who are contacted or respond using different sources or
recruitment techniques, the number and proportion eligible for the trial, those who
are eligible but refuse (or say they would refuse) randomization, the time and cost
of recruitment and randomization, and estimates of adherence to the intervention
and other aspects of the protocol, including study visits. It may be very helpful to
‘‘debrief’’ both subjects and staff after the pilot study to obtain their views on how
the trial methods could be improved.

A good pilot study requires substantial time and can be costly, but markedly
improves the chance of funding for major clinical trials and the likelihood that the
trial will be successfully completed.

CONDUCTING A CLINICAL TRIAL

Follow-up and Adherence to the Protocol
If a substantial number of study participants do not receive the study intervention, do
not adhere to the protocol, or are lost to follow-up, the results of the trial are likely
to be underpowered or biased. Strategies for maximizing follow-up and adherence
are outlined in Table 11.2.

The effect of the intervention (and the power of the trial) is reduced to the degree
that participants do not receive it. The investigator should try to choose a study drug
or intervention that is easy to apply or take and is well tolerated. Adherence is likely to
be poor if a behavioral intervention requires hours of practice by participants. Drugs
that can be taken in a single daily dose are the easiest to remember and therefore
preferable. The protocol should include provisions that will enhance adherence, such
as instructing participants to take the pill at a standard point in the morning routine
and giving them pill containers labeled with the day of the week.

There is also a need to consider how best to measure adherence to the
intervention, using such approaches as self-report, pill counts, pill containers with
computer chips that record when the container is opened, and serum or urinary
metabolite levels. This information can identify participants who are not complying,
so that approaches to improving adherence can be instituted and the investigator can
interpret the findings of the study appropriately.

Adherence to study visits and measurements can be enhanced by discussing what
is involved in the study before consent is obtained, by scheduling the visits at a time
that is convenient and with enough staff to prevent waiting, by calling the participant
the day before each visit, and by reimbursing travel expenses and other out-of-pocket
costs.

Failure to follow trial participants and measure the outcome of interest can
result in biased results, diminished credibility of the findings, and decreased statistical
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TABLE 11.2 Maximizing Follow-up and Adherence to the Protocol

Principle Example

Choose subjects who are likely to be
adherent to the intervention and
protocol

Require completion of two or more comprehensive visits
before randomization

Exclude those who are nonadherent in a
prerandomization run-in period

Exclude those who are likely to move or be noncompliant

Make the intervention easy Use a single tablet once a day if possible

Make study visits convenient and
enjoyable

Schedule visits often enough to maintain close contact but
not frequently enough to be tiresome

Schedule visits at night or on weekends, or collect
information by phone or e-mail

Have adequate and well-organized staff to prevent waiting

Provide reimbursement for travel

Establish inter-personal relationships with subjects

Make study measurements painless,
useful and interesting

Choose noninvasive, informative tests that are otherwise
costly or unavailable

Provide test results of interest to participants and
appropriate counseling or referrals

Encourage subjects to continue in the
trial

Never discontinue subjects from follow-up for protocol
violations, adverse events, or side effects

Send participants birthday and holiday cards

Send newsletters and e-mail messages

Emphasize the scientific importance of adherence and
follow-up

Find subjects who are lost to follow-up Pursue contacts of subjects

Use a tracking service

power. For example, a trial of nasal calcitonin spray to reduce the risk of osteoporotic
fractures reported that treatment reduced fracture risk by 36% (8). However, about
60% of those randomized were lost to follow-up, and it was not known if fractures had
occurred in these participants. Because the overall number of fractures was small, even
a few fractures in the participants lost to follow-up could have altered the findings of
the trial. This uncertainty diminished the credibility of the study findings (9).

Even if participants violate the protocol or discontinue the trial intervention,
they should be followed so that their outcomes can be used in intention-to-treat
analyses. In many trials, participants who violate the protocol by enrolling in another
trial, missing study visits, or discontinuing the study intervention are discontinued
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from follow-up; this can result in biased or uninterpretable results. Consider, for
example, a drug that causes a symptomatic side effect that results in more frequent
discontinuation of the study medication in those on active treatment compared to
those on placebo. If participants who discontinue study medication are not continued
in follow-up, this can bias the findings if the side effect is associated with the main
outcome.

Some strategies for achieving complete follow-up are similar to those discussed
for cohort studies (Chapter 7). At the outset of the study, participants should be
informed of the importance of follow-up and investigators should record the name,
address, and telephone number of one or two close acquaintances who will always
know where the participant is. In addition to enhancing the investigator’s ability to
assess vital status, the ability to contact participants by phone or e-mail may give
him access to proxy outcome measures from those who refuse to come for a visit at
the end. The Heart and Estrogen/Progestin Replacement Study (HERS) trial used
all of these strategies: 89% of the women returned for the final clinic visit after an
average of 4 years of follow-up, another 8% had a final telephone contact for outcome
ascertainment, and information on vital status was determined for every participant
by using phone contact, registered letters, contacts with close relatives, and a tracking
service (10).

The design of the trial should make it as easy as possible for participants to adhere
to the intervention and complete all follow-up visits and measurements. Long and
stressful visits can deter some participants from attending. Participants are more likely
to return for visits that involve noninvasive tests, such as electron beam computed
tomography, than for invasive tests such as coronary angiography. Collecting follow-
up information by phone or electronic means may improve adherence for participants
who find visits difficult. On the other hand, participants may lose interest in a trial
if there are not some social or interpersonal rewards for participation. Participants
may tire of study visits that are scheduled monthly, and they may lose interest if
visits only occur annually. Follow-up is improved by making the trial experience
positive and enjoyable for study participants: designing trial measurements and
procedures to be painless and interesting; performing tests that would not otherwise
be available; providing results of tests to participants (if the result will not influence
outcomes); sending newsletters, e-mail notes of appreciation, holiday, and birthday
cards; giving inexpensive gifts; and developing strong interpersonal relationships with
an enthusiastic and friendly study staff.

Two design aspects that are specific to trials may improve adherence and follow-
up: screening visits before randomization and a run-in period. Asking participants to
attend one or two screening visits before randomization may exclude participants
who find that they cannot complete such visits. The trick here is to set the hurdles
for entry into the trial high enough to exclude those who will later be nonadherent,
but not high enough to exclude participants who will turn out to have satisfactory
adherence.

A run-in period may be useful for increasing the proportion of study participants
who adhere to the intervention and follow-up procedures (Fig. 11.4). During the
baseline period, all participants are placed on placebo. A specified time later (usually
a few weeks), only those who have complied with the intervention (e.g., taken at
least 80% of the assigned study medication) are randomized. Excluding nonadherent
participants before randomization in this fashion may increase the power of the
study and permit a better estimate of the full effects of intervention. However, a
run-in period delays entry into the trial, the proportion of participants excluded
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FIGURE 11.4. In a randomized trial preceded by a run-in period to test compliance, the investigator
(a) selects a sample from the population, (b) measures baseline variables, (c) conducts the run-in
(d) randomizes adherent participants (R), (e) applies interventions, (f) measures outcome variables
during follow-up.

is generally small, and participants randomized to the active drug may notice a
change in their medication following randomization, contributing to unblinding.
It is also not clear that a placebo run-in is more effective in increasing adherence
than the requirement that participants complete one or more screening visits before
randomization. In the absence of a specific reason to suspect that adherence in the
study will be poor, it is probably not necessary to include a run-in period in the trial
design.

A variant of the placebo run-in design is the use of the active drug rather
than the placebo for the run-in period. In addition to increasing adherence among
those who enroll, an active drug run-in is designed to select participants who
tolerate and respond to the intervention. The effect of treatment on an intermediary
variable (i.e., a biomarker associated with the outcome) is used as the criterion for
randomization. In a trial of the effect of an antiarrhythmic drug on mortality, for
example, the investigators randomized only those participants whose arrhythmias
were satisfactorily suppressed without undue side effects (11). This design maximized
power by increasing the proportion of the intervention group that is responsive
to the intervention. It also improved generalizability by mimicking the clinician’s
tendency to continue using a drug only when he sees evidence that it is working.
However, the findings of trials using this strategy may not be generalizable to those
excluded.

Using an active run-in may also result in underestimation of the rate of adverse
effects. A trial of the effect of carvedilol on mortality in patients with congestive heart
failure used a 2-week active run-in period. During the run-in, 17 people had worsening
congestive heart failure and 7 died (12). These people were not randomized in the
trial, and these adverse effects of drug treatment were not included as outcomes.

Adjudicating Outcomes
Most self-reported outcomes, such as history of stroke or a participant report of
quitting smoking, are not 100% accurate. Self-reported outcomes that are important
to the trial should be confirmed if possible. Occurrence of disease, such as a stroke,
is generally adjudicated by (a) creating clear criteria for the outcome (e.g., a new,
persistent neurologic deficit with corresponding lesion on computed tomography or
magnetic resonance imaging scan), (b) collecting the clinical documents needed to
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make the assessment (e.g., discharge summaries and radiology reports), and (c) having
experts review each potential case and judge whether the criteria for the diagnosis
have been met. The adjudication is often done by two experts working independently,
then resolving discordant cases by discussion between the two or with a third expert.
Those who collect the information and adjudicate the cases must be blinded to the
treatment assignment.

Monitoring Clinical Trials
Investigators must assure that participants not be exposed to a harmful intervention,
denied a beneficial intervention, or continued in a trial if the research question is
unlikely to be answered.

The most pressing reason to monitor clinical trials is to make sure that the
intervention does not turn out unexpectedly to be harmful. If harm is judged to be
clearly present and to outweigh any benefits, the trial should be stopped. Second, if
an intervention is more effective than was estimated when the trial was designed, then
benefit can be observed early in the trial. When clear benefit has been proved, it may
be unethical to continue the trial and delay offering the intervention to participants
on placebo and to others who could benefit. Third, if there is a very low probability
of answering the research question, it may be unethical to continue participants in a
trial that requires time and effort and that may cause some discomfort or risk. If a
clinical trial is scheduled to continue for 5 years, for example, but after 4 years there is
little difference in the rate of outcome events in the intervention and control groups,
then the ‘‘conditional power’’ (the likelihood of answering the research question
given the results thus far) becomes very small and consideration should be given to
stopping the trial. Sometimes trials are stopped early on, if investigators are unable
to recruit or retain enough participants to provide adequate power to answer the
research question, or adherence to the intervention is very poor.

The research question might be answered by other trials before a given trial is
finished. It is desirable to have more than one trial that provides evidence concerning
a given research question, but if definitive evidence becomes available during a trial,
the investigator should consider stopping.

Most clinical trials should include an interim monitoring plan. Trials funded by
the National Institutes of Health (NIH) generally require interim monitoring, even
if the intervention is considered safe (such as a behavioral intervention for weight
loss). How interim monitoring will occur should be considered in the planning of any
clinical trial. In small trials with interventions likely to be safe, the trial investigators
might monitor safety or appoint a single independent data and safety monitor. In large
trials and trials in which adverse effects of the intervention are unknown or potentially
dangerous, interim monitoring is generally performed by a committee (usually known
as the Data and Safety Monitoring Board [DSMB] or Data Monitoring Committee)
consisting of experts in the disease or condition under study, biostatisticians, clinical
trialists, ethicists and occasionally a representative of the patient group being studied.
These experts are not involved in the trial, and should have no personal or financial
interest in its continuation. DSMB guidelines and procedures should be detailed
in writing before the trial begins. Guidance for developing DSMB procedures is
provided by the FDA and the NIH. Items to include in these guidelines are outlined
in Table 11.3.
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TABLE 11.3 Monitoring a Clinical Trial

Elements to monitor
Recruitment
Randomization
Adherence to intervention, and blinding
Follow-up completeness
Important variables

Outcomes
Adverse effects
Potential co-interventions

Who will monitor
Trial investigator or a single monitor if small trial with minor hazards
Independent DSMB otherwise

Methods for interim monitoring
Specify statistical approach and frequency of monitoring in advance
Importance of judgment and context in addition to statistical stopping rules

Changes in the protocol that can result from monitoring
Terminate the trial
Modify the trial

Stop one arm of the trial
Add new measurements necessary for safety monitoring
Discontinue high-risk participants

Extend the trial in time
Enlarge the trial sample

Stopping a trial should always be a careful decision that balances ethical respon-
sibility to the participants and the advancement of scientific knowledge. Whenever
a trial is stopped early, the chance to provide more conclusive results will be lost.
The decision is often complex, and potential risks to participants must be weighed
against possible benefits. Statistical tests of significance provide important but not
conclusive information for stopping a trial. Trends over time and effects on re-
lated outcomes should be evaluated for consistency, and the impact of stopping
the study early on the credibility of the findings should be carefully considered
(Example 11.1).

There are many statistical methods for monitoring the interim results of a trial.
Analyzing the results of a trial repeatedly is a form of multiple hypothesis testing
and thereby increases the probability of a type I error. For example, if α = 0.05
is used for each interim test and the results of a trial are analyzed four times
during the trial and again at the end, the probability of making a type I error is
increased from 5% to about 14% (13). To address this problem, statistical methods
for interim monitoring generally decrease the α for each test so that the overall
α is close to 0.05. There are multiple approaches to deciding how to ‘‘spend α’’
(Appendix 11.1).
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Example 11.1 Trials That Have Been Stopped Early

Canadian Atrial Fibrillation Anticoagulation Study (CAFA) (14): Atrial
fibrillation is a risk factor for stroke and embolic events. The CAFA study was a
blinded, randomized, placebo-controlled trial to evaluate the efficacy of warfarin in
decreasing the rate of stroke, systemic embolism, or intracerebral or fatal bleeding in
patients with nonrheumatic atrial fibrillation. The trial was designed to enroll 660
subjects and follow them on therapy for 3.5 years. During the trial (after 383 patients
had been randomized and followed for a mean of 1.2 years), the results of two other
randomized trials were reported showing a significant decrease in stroke risk and a
low rate of major bleeding in those treated with warfarin. The Steering Committee
decided that the evidence of benefit with warfarin was sufficiently compelling to stop
the trial.

Cardiac Arrhythmia Suppression Trial (CAST) (11): The occurrence of
ventricular premature depolarizations in survivors of myocardial infarction (MI)
is a risk factor for sudden death. The CAST evaluated the effect of antiarrhythmic
therapy (encainide, flecainide, or moricizine) in patients with asymptomatic or
mildly symptomatic ventricular arrhythmia after MI on risk for sudden death.
During an average of 10 months of follow-up, the participants treated with active
drug had a higher total mortality (7.7% vs. 3.0%) and a higher rate of death from
arrhythmia (4.5% vs. 1.5%) than those assigned to placebo. The trial was planned to
continue for 5 years but this large and highly statistically significant difference led
to the trial being stopped after 18 months.

Coronary Drug Project (CDP) (15,16): The CDP was a randomized, blinded
trial to determine if five different cholesterol-lowering interventions (conjugated
estrogen 5.0 mg/day; estrogen 2.5 mg/day; clofibrate 1.8 g/day; dextrothyroxine
6.0 mg/day; niacin 3.0 g/day) reduced the 5-year mortality rate. The CDP enrolled
8,341 men with MI who were followed for at least 5 years. With an average of
18 months of follow-up, the high-dose estrogen arm was stopped due to an excess
of nonfatal MI (6.2% compared with 3.2%) and venous thromboembolic events
(3.5% compared with 1.5%), as well as testicular atrophy, gynecomastia, breast
tenderness, and decreased libido. At the same time, dextrothyroxine was stopped in
the subgroup of men who had frequent premature ventricular beats on their baseline
electrocardiogram because the death rate in this subgroup was 38.5% compared with
11.5% in the same subgroup receiving placebo. Dextrothyroxine therapy was stopped
in all subjects shortly thereafter due to an excess mortality rate in the overall treated
group. Two years before the planned end of the study, the 2.5-mg-dose estrogen
arm was also stopped because there was no evidence of any beneficial effect and an
increased risk of venous thromboembolic events.

Physicians Health Study (17): The Physicians Health Study was a randomized
trial of the effect of aspirin (325 mg every other day) on cardiovascular mortality.
The trial was stopped after 4.8 years of the planned 8-year follow-up. There was a
statistically significant reduction in risk of MI in the treated group (relative risk
for nonfatal MI = 0.56), but the number of cardiovascular disease deaths in each
group was equal. The rate of cardiovascular disease deaths observed in the study was
far lower than expected (88 after 4.8 years of follow-up vs. 733 expected), and the
trial was stopped because of the beneficial effect of aspirin on risk for nonfatal MI
coupled with the very low conditional power to detect a favorable impact of aspirin
therapy on cardiovascular mortality.
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Adaptive Design
Clinical trials are generally conducted according to a protocol that does not change
during the conduct of the study. However, for some types of treatments and
conditions, it is possible to monitor results from the trial as it progresses and change
the design of the trial based on interim analyses of the results (18). For example,
consider a trial of several doses of a new treatment for menopausal hot flashes. The
initial design may plan to enroll 40 women to a placebo group and 40 to each of three
doses for 12 weeks of treatment over an enrollment period lasting 1 year. Review of
the results after the first 10 women in each group have completed the first 4 weeks
of treatment might reveal that there is a trend toward an effect only in the highest
dose. It may be more efficient to stop assigning participants to the two lower doses
and continue randomizing only to the highest dose. In this case, the design of the
trial can be adapted to the interim results by changing the design in midstream to use
only one dose versus the placebo. Other facets of a trial that could be changed based
on interim results include increasing or decreasing the sample size or duration of the
trial if interim results indicate that the effect size or rate of outcomes differ from the
original assumptions.

These adaptive designs are feasible only for treatments that produce outcomes
that are measured and analyzed early enough in the course of the trial that changes
can be made in the design. To prevent bias in the ascertainment of outcomes,
the interim analyses and consideration of change in design must be done by an
independent group such as a DSMB that reviews unblinded data. Furthermore,
multiple interim analyses will increase the probability of finding a result that is due
to chance variations in the early results from the trial; the increased chance of a
‘Type 1’ error must be considered in the design and analysis of the results. Adaptive
designs are also more complex to conduct and analyze, informed consent must
include the range of possible changes in the study design or be repeated, and it is
difficult to estimate the cost of an adaptive trial and the specific resources necessary
to complete it.

With these precautions and limitations, adaptive designs are efficient and may
be valuable, especially during the development of a new treatment, allowing earlier
identification of the best dose and duration and ensuring that a high proportion of
participants receive the optimal treatment.

Analyzing the Results
Statistical analysis of the primary hypothesis of a clinical trial is generally straight-
forward. If the outcome is dichotomous, the simplest approach is to compare the
proportions in the study groups using a chi-squared test. When the outcome is
continuous, a t test may be used, or a nonparametric alternative if the outcome is
not normally distributed. In most clinical trials, the duration of follow-up is different
for each participant, necessitating the use of survival time methods. More sophis-
ticated statistical models such as Cox proportional hazards analysis can accomplish
this and at the same time adjust for chance maldistributions of baseline confounding
variables. The technical details of when and how to use these methods are described
elsewhere (19).

Two important issues that should be considered in the analysis of clinical trial
results are the primacy of the intention-to-treat analytic approach and the ancillary role
for subgroup analyses. The investigator must decide what to do with nonadherence
or ‘‘cross-overs,’’ participants assigned to the active treatment group who do not
get treatment or discontinue it and those assigned to the control group who end up
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getting active treatment. An analysis done by intention-to-treat compares outcomes
between the study groups with every participant analyzed according to his randomized
group assignment, regardless of whether he adhered to the assigned intervention.
Intention-to-treat analyses may underestimate the full effect of the treatment, but
they guard against the more important problem of biased results.

An alternative to the intention-to-treat approach is to analyze only those who
comply with the intervention. It is common, for example, to perform ‘‘per protocol’’
analyses that include only participants who were fully adherent to the protocol. This is
defined in various ways, but often includes only participants in both groups who were
adherent to the assigned study medication, completed a certain proportion of visits
or measurements and had no other protocol violations. A subset of the per protocol
analysis is an ‘‘as-treated’’ analysis in which only participants who were adherent to
the intervention are included. These analyses seem reasonable because participants can
only be affected by an intervention they actually receive. The problem arises, however,
that participants who adhere to the study treatment and protocol may be different from
those who drop out in ways that are related to the outcome. In the Postmenopausal
Estrogen-Progestin Interventions Trial (PEPI), 875 postmenopausal women were
randomly assigned to four different estrogen or estrogen plus progestin regimens
and placebo (20). Among women assigned to the unopposed estrogen arm, 30% had
discontinued treatment after 3 years because of endometrial hyperplasia, which is a
precursor of endometrial cancer. If these women are eliminated in a per protocol
analysis, the association of estrogen therapy and endometrial cancer will be missed.

The major disadvantage of the intention-to-treat approach is that participants
who choose not to take the assigned intervention will, nevertheless, be included in the
estimate of the effects of that intervention. Therefore, substantial discontinuation or
crossover between treatments will cause intention-to-treat analyses to underestimate
the magnitude of the effect of treatment. For this reason, results of trials are often
evaluated with both intention-to-treat and per protocol analyses. For example, in the
Women’s Health Initiative randomized trial of the effect of estrogen plus progestin
treatment on breast cancer risk, the hazard ratio was 1.24 (P = 0.003) from the
intention-to-treat analysis and 1.49 in the as-treated analysis (P < 0.001) (21). If the
results of intention-to-treat and per protocol analyses differ, the intention-to-treat
results generally predominate for estimates of efficacy because they preserve the value
of randomization and, unlike per protocol analyses, can only bias the estimated effect
in the conservative direction (favoring the null hypothesis). However, for estimates of
harm (e.g., the breast cancer findings noted above), as-treated or per protocol analyses
provide the most conservative estimates, as interventions can only be expected to cause
harm in exposed persons. Results can only be analyzed both by intention-to-treat and
per protocol if follow-up measures are completed regardless of whether participants
adhere to treatment, which should always be a goal.

Subgroup analyses are defined as comparisons between randomized groups in
a subset of the trial cohort. These analyses have a mixed reputation because they
are easy to misuse and can lead to wrong conclusions. With proper care, however,
they can provide useful ancillary information and expand the inferences that can be
drawn from a clinical trial. To preserve the value of randomization, subgroups should
be defined by measurements that were made before randomization. For example, a
trial of alendronate to prevent osteoporotic fractures found that the drug decreased
risk of fracture by 14% among women with low bone density. Preplanned analyses
by subgroups of bone density measured at baseline revealed that the treatment was
effective (36% reduction in fracture risk; P < 0.01) among women whose bone
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density was more than 2.5 standard deviations below normal. In contrast, treatment
was ineffective in women with higher bone density at baseline (P = 0.02 for the
interaction) (22). It is important to note that the value of randomization is preserved:
the fracture rate among women randomized to alendronate is compared with the rate
among women randomized to placebo in each subgroup.

Subgroup analyses are prone, however, to producing misleading results for several
reasons. Subgroups are, by definition, smaller than the entire trial population, and
there may not be sufficient power to find important differences; investigators should
avoid claiming that a drug ‘‘was ineffective’’ in a subgroup when the finding might
reflect insufficient power to find an effect. Investigators often examine results in a
large number of subgroups, increasing the likelihood of finding a different effect
of the intervention in one subgroup by chance. For example, if 20 subgroups are
examined, differences in one subgroup at P < 0.05 would be expected by chance.
Optimally, planned subgroup analyses should be defined before the trial begins and
the number of subgroups analyzed should be reported with the results of the study. A
conservative approach is to require that claims about different responses in subgroups
be supported by statistical evidence that there is an interaction between the effect of
treatment and the subgroup characteristic, as in the alendronate trial noted above; if
several subgroups are examined, a significance level of 0.01 should be used.

Subgroup analyses based on postrandomization factors do not preserve the value
of randomization and often produce misleading results. Per protocol analyses limited
to subjects who adhere to the randomized treatment are examples of this type of
postrandomization subgroup analysis.

SUMMARY

1. There are several variations on the randomized trial design that can substantially
increase efficiency under the right circumstances:
a. The factorial design allows two independent trials to be carried out for the

price of one.
b. Cluster randomization permits efficient studies of naturally occurring groups.
c. Equivalence trials compare a new intervention to an existing ‘‘standard of

care;’’ this design may be the most ethical and clinically meaningful, but often
requires a larger sample size than placebo-controlled trials.

d. Time-series designs have a single (nonrandomized) group with outcomes
compared within each subject during periods on and off the intervention.

e. Crossover designs combine randomized and time-series designs to enhance
control over confounding and minimize the required sample size if carryover
effects are not a problem.

2. If a substantial number of study participants do not adhere to the study interven-
tion or are lost to follow-up, the results of the trial are likely to be underpowered,
biased, or uninterpretable.

3. An important difference between clinical trials and observational studies is that in
a clinical trial, something is being done to the participants. During a trial, interim
monitoring by an independent DSMB, is needed to assure that participants
are not exposed to a harmful intervention, denied a beneficial intervention, or
continued in a trial if the research question is unlikely to be answered.
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4. Intention-to-treat analysis takes advantage of the control of confounding provided
by randomization and should be the primary analysis approach. Per protocol
analyses, a secondary approach that provides an estimate of the effect size in
adherent subjects, should be interpreted with caution.

5. With proper care, subgroup analyses can expand the inferences that can be
drawn from a clinical trial. To preserve the value of randomization, analyses
should compare outcomes between subsets of randomly assigned study groups
classified by prerandomization variables. To minimize misinterpretations, the
investigator should specify the subgroups in advance, test interactions for statistical
significance, and report the number of subgroups examined.

APPENDIX 11.1

Interim Monitoring of Trial Outcomes
Interim monitoring of trial results is a form of multiple testing, and thereby increases
the probability of a type I error. To address this problem, α for each test (αi) is
generally decreased so that the overall α approximately = 0.05. There are multiple
statistical methods for decreasing αi.

One of the easiest to understand is the Bonferroni method, where αi = α/N
if N is the total number of tests performed. For example, if the overall α is 0.05
and five tests will be performed, αi for each test is 0.01. This method has several
disadvantages, however. It requires using an equal threshold for stopping the trial at
any interim analysis and results in a very low α for the final analysis. Most investigators
would rather use a lower threshold for stopping a trial earlier rather than later in the
trial and use an α close to 0.05 for the final analysis. In addition, this approach is too
conservative because it assumes that each test is independent. Interim analyses are not
independent, because each successive analysis is based on cumulative data, some of
which were included in prior analyses. For these reasons, Bonferroni is not generally
used.

A commonly used method suggested by O’Brien and Fleming (23) uses a very
small initial αi, then gradually increases it such that αi for the final test is close to
the overall α. O’Brien–Fleming provide methods for calculating αi if the investigator
chooses the number of tests to be done and the overall α. At each test, Zi = Z ∗(Ni)1/2,
where Zi = Z value for the ith test; Z ∗ is determined so as to achieve the overall
significance level; N is the total number of tests planned and i is the ith test. For
example, for five tests and overall α = 0.05, Z ∗ = 2.04; the initial α = 0.00001 and
the final α5 = 0.046. This method is unlikely to lead to stopping a trial very early
unless there is a striking difference in outcome between randomized groups. In
addition, this method avoids the awkward situation of getting to the end of a trial
and accepting the null hypothesis although the P value is substantially less than 0.05.

A major drawback to the preceding methods is that the number of tests and the
proportion of data to be tested must be decided before the trial starts. In some trials,
additional interim tests become necessary when important trends occur. DeMets and
Lan (24) developed a method using a specified α-spending function that provides
continuous stopping boundaries. The αi at a particular time (or after a certain pro-
portion of outcomes) is determined by the function and by the number of previous
‘‘looks.’’ Using this method, neither the number of ‘‘looks’’ nor the proportion of
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data to be analyzed at each ‘‘look’’ must be specified before the trial. Of course, for
each additional unplanned interim analysis conducted, the final overall α is a little
smaller.

A different set of statistical methods based on curtailed sampling techniques
suggests termination of a trial if future data are unlikely to change the conclusion.
The multiple testing problem is irrelevant because the decision is based only on
estimation of what the data will show at the end of the trial. A common approach
is to compute the conditional probability of rejecting the null hypothesis at the end
of the trial, based on the accumulated data. A range of conditional power is typically
calculated, first assuming that Ho is true (i.e., that any future outcomes in the treated
and control groups will be equally distributed) and second assuming that Ha is true
(i.e., that outcomes will be distributed unequally in the treatment and control groups
as specified by Ha). Other estimates can also be used to provide a full range of
reasonable effect sizes. If the conditional power to reject the null hypothesis across
the range of assumptions is low, the null hypothesis is not likely to be rejected and
the trial might be stopped.
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12 Designing Studies

of Medical Tests

Thomas B. Newman, Warren S. Browner, Steven R. Cummings,
and Stephen B. Hulley

Medical tests, such as those performed to screen for a risk factor, diagnose a disease,
or estimate a patient’s prognosis, are an important topic for clinical research. The
study designs discussed in this chapter can be used when studying whether, and in
whom, a particular test should be done.

Although clinical trials of medical tests are occasionally feasible and sometimes
necessary, most designs for studies of medical tests are descriptive and resemble the
observational designs in Chapters 7 and 8. There are, however, some important
differences. The goal of most observational studies is to identify causal relationships
(e.g., whether estrogen use causes breast cancer). Causality is generally irrelevant
in studies of diagnostic tests. In addition, knowing that a test result is more closely
associated with a condition or outcome than would be expected by chance alone is not
nearly enough to determine its clinical usefulness. Instead, parameters that describe the
performance of a medical test, such as sensitivity, specificity, and likelihood ratios
are commonly estimated, with their associated confidence intervals. In this chapter we
review studies of medical tests focusing not just on studies of test performance, but
also on determining whether or under what circumstances a test is clinically useful.

DETERMINING WHETHER A TEST IS USEFUL

For a test to be useful it must pass muster on a series of increasingly difficult
questions that address its reproducibility, accuracy, feasibility, and effects on
clinical decisions and outcomes (Table 12.1). Favorable answers to each of these
questions are necessary but insufficient criteria for a test to be worth doing. For
example, if a test does not give consistent results when performed by different
people or in different places, it can hardly be useful. If the test seldom supplies new
information and hence seldom affects clinical decisions, it may not be worth doing.
Even if it affects decisions, if these decisions do not improve the clinical outcome of
patients who were tested, the test still may not be useful.

183
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TABLE 12.1 Questions to Determine Usefulness of a Medical Test, Possible
Designs to Answer Them, and Statistics for Reporting Results

Question Possible Designs Statistics for Results∗

How reproducible is the
test?

Studies of intra- and
interobserver and laboratory
variability

Proportion agreement, kappa,
coefficient of variation, mean
and distribution of differences
(avoid correlation coefficient)

How accurate is the test? Cross-sectional, case–control,
or cohort-type designs in which
a test result is compared with a
gold standard

Sensitivity, specificity, positive
and negative predictive value,
receiver operating characteristic
curves, and likelihood ratios

How often do test results
affect clinical decisions?

Diagnostic yield studies, studies
of pre- and posttest clinical
decision making

Proportion abnormal, proportion
with discordant results,
proportion of tests leading to
changes in clinical decisions;
cost per abnormal result or per
decision change

What are the costs, risks,
and acceptability of the test?

Prospective or retrospective
studies

Mean costs, proportions
experiencing adverse effects,
proportions willing to undergo
the test

Does doing the test improve
clinical outcome or have
adverse effects?

Randomized trials, cohort or
case–control studies in which
the predictor variable is
receiving the test and the
outcome includes morbidity,
mortality, or costs related either
to the disease or to its treatment

Risk ratios, odds ratios, hazard
ratios, number needed to treat,
rates and ratios of desirable and
undesirable outcomes

∗ Most statistics in this table should be presented with confidence intervals.

Of course, if using a test improves outcome, favorable answers to the other
questions can be inferred. However, demonstrating that doing a test improves
outcome is impractical for most diagnostic tests. Instead, the potential effects of
a test on clinical outcomes are usually assessed indirectly, by demonstrating that
the test increases the likelihood of making the correct diagnosis or is safer or less
costly than existing tests. When developing a new diagnostic or prognostic test, it
may be worthwhile to consider what aspects of current practice are most in need
of improvement. Are current tests unreliable, expensive, dangerous, or difficult to
perform?

General Issues for Studies of Medical Tests
• Gold standard for diagnosis. Some diseases have a gold standard, such as the results

of a tissue biopsy, that is generally accepted to indicate the presence (or absence)
of that disease. Other diseases have ‘‘definitional’’ gold standards, such as defining
coronary artery disease as a 50% obstruction of at least one major coronary artery
as seen with coronary angiography. Still others, such as rheumatologic diseases,
require that a patient have a minimum number of signs, symptoms, or specific
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laboratory abnormalities to meet the criteria for having the disease. Of course the
accuracy of any signs, symptoms, or laboratory tests used to diagnose a disease
cannot be studied if those same signs and symptoms are used as part of the gold
standard for the diagnosis. Furthermore, if the gold standard is imperfect it can
make a test either look worse than it really is (if in reality the test outperforms
the gold standard), or better than it really is (if the gold standard is an imperfect
measure of the condition of interest and the test has the same deficiencies).

• Spectrum of disease severity and of test results. Because the goal of most studies
of medical tests is to draw inferences about populations by making measurements
on samples, the way the sample is selected has a major effect on the validity of the
inferences. Spectrum bias occurs when the spectrum of disease (or nondisease)
in the sample differs from that in the population to which the investigator wishes
to generalize. This can occur if the sample of subjects with disease is sicker, or
the subjects without the disease are healthier, than those to whom the test will be
applied in practice. Almost any test will perform well if the task is to distinguish
between the very sick and the healthy, such as those with symptomatic pancreatic
cancer and healthy controls. It is more difficult to distinguish between one disease
and another that can cause similar symptoms, or between the healthy and those
with early, presymptomatic disease. The subjects in a study of a diagnostic test
should have spectra of disease and nondisease that resemble those of the population
in which the test will be used. For example, a diagnostic test for pancreatic cancer
might be studied in patients with abdominal pain and weight loss.

Spectrum bias can occur from an inappropriate spectrum of test results as well as
an inappropriate spectrum of disease. For example, consider a study of interobserver
agreement among radiologists reading mammograms. If they are asked to classify
the films as normal or abnormal, their agreement will be much higher if the
‘‘positive’’ films they examine are a set selected because they are clearly abnormal,
and the ‘‘negative’’ films are a set selected as free of suspicious abnormalities.

• Sources of variation, generalizability, and the sampling scheme. For some research
questions the main source of variation in test results is between patients. For
example, some infants with bacteremia will have an elevated white blood cell count,
whereas others will not. The proportion of bacteremic infants with high white
blood cell counts is not expected to vary much according to who draws the blood
or what laboratory measures it.

On the other hand, for many tests the results may depend on the person doing
or interpreting them, or the setting in which they are done. For example, sensitivity,
specificity, and interrater reliability for interpreting mammograms depend on the
readers’ skill and experience as well as the quality of the equipment. Sampling
those who perform and interpret the test can enhance the generalizability of studies
of tests that require technical or interpretive skill. When accuracy may vary from
institution to institution, the investigators will need to sample several different
institutions to be able to assess the generalizability of the results.

• Importance of blinding . Many studies of diagnostic tests involve judgments, such
as whether to consider a test result positive, or whether a person has a particular
disease. Whenever possible, investigators should blind those interpreting test results
from information about the patient being tested that is related to the gold standard.
In a study of the contribution of ultrasonography to the diagnosis of appendicitis,
for example, those reading the sonograms should not know the results of the history
and physical examination. Similarly, the pathologists making the final determination
of who does and does not have appendicitis (the gold standard to which sonogram
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results will be compared) should not know the results of the ultrasound examination.
Blinding prevents biases, preconceptions, and information from sources other than
the test from affecting these judgments.

• Costs versus charges. Investigators wishing to focus on test expense may be tempted
to report charges rather than costs because charges are more readily available and
are generally much higher than costs. However, test charges vary greatly among
institutions and may have little relation to what is actually paid for the test or to its
actual costs. In many cases, test charges resemble the rack rate on the inside door
of a hotel room—a charge much higher than most customers actually pay. On the
other hand, estimating how much an institution or society must spend per test is
difficult, because many of the expenses, such as laboratory space and equipment, are
fixed. One approach is to use the average amount actually paid for the test; another
is to multiply charges by the institution’s average cost-to-charge ratio.

STUDIES OF TEST REPRODUCIBILITY

Sometimes the results of tests vary according to when or where they were done or
who did them. Intraobserver variability describes the lack of reproducibility in
results when the same observer or laboratory performs the test at different times.
For example, if a radiologist is shown the same chest radiograph on two occasions,
what proportion of the time will he agree with himself on the interpretation?
Interobserver variability describes the lack of reproducibility among two or more
observers: if another radiologist is shown the same film, how likely is he to agree with
the first radiologist?

Studies of reproducibility may be done when the level of reproducibility (or lack
thereof) is the main research question. In addition, reproducibility is often studied
with a goal of quality improvement, either for those making measurements as part of a
research study of a different question, or as a part of clinical care. When reproducibility
is poor—because either intra- or interobserver variability is large—a measurement is
unlikely to be useful, and it may need to be either improved or abandoned.

Studies of reproducibility do not require a gold standard, so they can be done
for tests or diseases where none exists. Of course, both (or all) observers can agree
with one another and still be wrong: intra- and interobserver reproducibility address
precision, not accuracy (Chapter 4).

Designs
The basic design to assess test reproducibility involves comparing tests done to results
from more than one observer or on more than one occasion from a sample of patients
or specimens. For tests that involve several steps in many locations, differences in
any one of which might affect reproducibility, the investigator will need to decide
on the breadth of the study’s focus. For example, measuring interobserver agreement
of pathologists about the interpretation of a set of cervical cytology slides in a
single hospital may overestimate the overall reproducibility of Pap smears because the
variability in how the sample was obtained and how the slide was prepared would not
be assessed.

The extent to which an investigator needs to isolate the steps that might lead
to interobserver disagreement depends partly on the goals of his study. Most studies
should estimate the reproducibility of the entire testing process, because this is what
determines whether the test is worth using. On the other hand, an investigator who
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is developing or improving a test may want to focus on the specific steps at which
variability occurs, to improve the process. In either case, the investigator should lay
out the exact process for obtaining the test result in the operations manual (Chapters 4
and 17) and then describe it in the methods section when reporting the study results.

Analysis
• Categorical variables. The simplest measure of interobserver agreement is the

proportion of observations on which the observers agree exactly, sometimes called
the concordance rate. However, when there are more than two categories or
the observations are not evenly distributed among the categories (e.g., when the
proportion ‘‘abnormal’’ on a dichotomous test is much different from 50%), the
concordance rate can be hard to interpret, because it does not account for agreement
that could result simply from both observers having some knowledge about the
prevalence of abnormality. For example, if 95% of subjects are normal, two observers
who randomly choose which 5% of tests to call ‘‘abnormal’’ will agree that results
are ‘‘normal’’ about 90% of the time. A better measure of interobserver agreement,
called kappa (Appendix 12A), measures the extent of agreement beyond what
would be expected by chance alone. Kappa ranges from −1 (perfect disagreement)
to 1 (perfect agreement). A kappa of 0 indicates that the amount of agreement was
exactly that expected by chance. Kappa values above 0.8 are generally considered
very good; levels of 0.6 to 0.8 are good.

• Continuous variables. Measures of interobserver variability for continuous vari-
ables depend on the design of the study. Some studies measure the agreement
between just two machines or methods (e.g., temperatures obtained from two
different thermometers). The best way to describe the data from such a study is to
report the mean difference between the paired measurements and the distribution
of the differences, perhaps indicating the proportion of time that the difference is
clinically important. For example, if a clinically important difference in temperature
is thought to be 0.3◦C, a study comparing temperatures from tympanic and rectal
thermometers could estimate the mean difference between the two and how often
the two measurements differed by more than 0.3◦C.1

Other studies examine interobserver or interinstrument variability of a large
group of different technicians, laboratories, or machines. These results are com-
monly summarized using the coefficient of variation, which is the standard
deviation of the results on a single specimen divided by their mean, expressed as a
percentage. If the results are normally distributed (i.e., if a histogram with results
on the same specimen would be bell shaped), then about 95% of the results on
different machines will be within two standard deviations of the mean. For example,
given a coefficient of variation of a serum cholesterol measurement of 2% (2), the
standard deviation of multiple measurements with a mean of 200 mg/dL would be
about 4 mg/dL and about 95% of laboratories would be expected to report a value
between 192 and 208 mg/dL.

1Although commonly used, the correlation coefficient is best avoided in studies of the reliability of laboratory tests
because it is highly influenced by outlying values and does not allow readers to determine how frequently differences
between the two measurements are clinically important. Confidence intervals for the mean difference should also be
avoided because their dependence on sample size makes them potentially misleading. A narrow confidence interval
for the mean difference between the two measurements does not imply that they generally closely agree—only that
the mean difference between them is being measured precisely. For more extensive reading on this issue, see Bland
and Altman (1).
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STUDIES OF THE ACCURACY OF TESTS

Studies in this section address the question, ‘‘To what extent does the test give the
right answer?’’ To be able to answer this question, a gold standard must be available
in order to tell what the right answer is.

Designs
• Sampling . Studies of diagnostic tests can have designs analogous to case–control or

cross-sectional studies, whereas studies of prognostic tests usually resemble cohort
studies. In the case–control design, those with and without the disease are sampled
separately and the test results in the two groups are compared. Unfortunately, it is
often hard to reproduce a clinically realistic spectrum of the disease and absence of
the disease in the two samples. Those with the disease should not have progressed
to severe stages that are relatively easy to diagnose. Those without the target
disease should be patients who had symptoms consistent with a particular disease
and who turned out not to have it. Studies of tests that sample those with and
without the target disease separately are also subject to a bias in the measurement
of the test result if that measurement is made knowing whether the sample came
from a case or control. Finally, studies with this sampling scheme cannot be used
(without other information) to estimate predictive value or posterior probability
(discussed below). Therefore, ‘‘case–control’’ sampling for diagnostic tests should
be reserved for rare diseases for which no other sampling scheme is feasible.

A single cross-sectional sample of patients being evaluated for a particular
diagnosis generally will yield more valid and interpretable results. For example,
Tokuda et al. (3) found that the severity of chills was a strong predictor of
bacteremia in a series of 526 consecutive febrile adult emergency department
patients. Because the subjects were enrolled before it was known whether they
were bacteremic, the spectrum of patients in this study should be reasonably
representative of patients who present to emergency rooms with fever.

A variant of the cross-sectional sampling scheme that we call tandem testing
is sometimes used to compare two (presumably imperfect) tests with one another.
Both tests are done on a representative sample of patients who may or may not
have the disease and the gold standard is selectively applied to the patients with
positive results on either or both tests. Because subjects with negative results may
be false-negatives, the gold standard should also be applied to a random sample of
patients with concordant negative results. This design, which allows the investigator
to determine which test is more accurate without the expense of measuring a gold
standard in all the subjects with negative test results, has been used in studies
comparing different cervical cytology methods (4).

Prognostic test studies require either prospective or retrospective cohort de-
signs. In prospective cohort studies, the test is done at baseline, and the subjects
are then followed to see who develops the outcome of interest. A retrospective
cohort study may be possible if a new test becomes available, such as viral load in
HIV-positive patients, and a previously defined cohort with banked blood samples
is available. Then the viral load can be measured in the stored blood, to see whether
it predicts prognosis. The nested case–control design (Chapter 7) is particularly
attractive if the outcome of interest is rare and the test is expensive.

• Predictor variable: the test result . Although it is simplest to think of the results of
a diagnostic test as being either positive or negative, many tests have categorical,
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ordinal or continuous results. Whenever possible, investigators should use ordinal
or continuous results to take advantage of all available information in the test.
Most tests are more indicative of a disease if they are very abnormal than if they
are slightly abnormal, and most also have a borderline range in which they do not
provide much information.

• Outcome variable: the disease (or its outcome). The outcome variable in a diagnostic
test study is often the presence or absence of the disease, best determined with a gold
standard. Wherever possible, the assessment of outcome should not be influenced by
the results of the diagnostic test being studied. This is best accomplished by blinding
those measuring the gold standard so that they do not know the results of the test.
Sometimes uniform application of the gold standard is not ethical or feasible for
studies of diagnostic tests, particularly screening tests. For example, Smith-Bindman
et al. studied the accuracy of mammography according to characteristics of the
interpreting radiologist (5). Women with positive mammograms were referred for
further tests, eventually with pathologic evaluation as the gold standard. However,
it is not reasonable to do biopsies in women whose mammograms are negative.
Therefore, to determine whether these women had falsely negative mammograms
the authors linked their mammography results with local tumor registries and used
whether or not breast cancer was diagnosed in the year following mammography
as the gold standard. This solution, although reasonable, assumes that all breast
cancers that exist at the time of mammography will be diagnosed within 1 year, and
that all cancers diagnosed within 1 year existed at the time of the mammogram.
Measuring the gold standard differently depending on the result of the test in this
fashion creates a potential for bias, discussed in more detail at the end of the chapter.
Prognostic tests are studied in patients who already have the disease. The outcome
is what happens to them, such as how long they live, what complications they
develop, or what additional treatments they require. Again, blinding is important,
especially if clinicians caring for the patients may make decisions based upon the
prognostic factors being studied. For example, Rocker et al. (6) found that the
attending physicians’ estimates of prognosis, but not those of bedside nurses, were
independently associated with intensive care unit mortality. This could be because
the attending physicians were more skilled at estimating severity of illness, but
it could also be because attending physician prognostic estimates had a greater
effect than those of the nurses on decisions to withdraw support. To distinguish
between these possibilities, it would be helpful to obtain estimates of prognosis
from attending physicians other than those involved in making or framing decisions
about withdrawal of support.

Analysis
• Sensitivity, specificity, and positive and negative predictive values. When results

of a dichotomous test are compared with a dichotomous gold standard, the results
can be summarized in a 2 × 2 table (Table 12.2). The sensitivity is defined as the
proportion of subjects with the disease in whom the test gives the right answer (i.e.,
is positive), whereas the specificity is the proportion of subjects without the disease
in whom the test gives the right answer (i.e., is negative). Positive and negative
predictive values are the proportions of subjects with positive and negative tests in
whom the test gives the right answer.

• Receiver operating characteristic curves. Many diagnostic tests yield ordinal or
continuous results. With such tests, several values of sensitivity and specificity are
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TABLE 12.2 Summarizing Results of a Study of a Dichotomous Tests in a
2 × 2 Table

Gold Standard

Disease Total

Positive
a

a + b
Positive predictive value*

a/(a + b)
Test

True-positive

Negative
c

c + d
Negative predictive value*

d/(c + d)False-negative

Total a + c

No Disease

b

False-positive

d

True-negative

b + d

Sensitivity
a/(a + c)

Specificity
d/(b + d)

* Positive and negative predictive values can be calculated from a 2×2 table like this only when the prevalence of 
disease is (a + c)/(a + b + c + d). This will not be the case if subjects with and without disease are sampled 
separately  (e.g., 100 of each).

possible, depending on the cutoff point chosen to define a positive test. This trade-
off between sensitivity and specificity can be displayed using a graphic technique
originally developed in electronics: receiver operating characteristic (ROC) curves.
The investigator selects several cutoff points and determines the sensitivity and
specificity at each point. He then graphs the sensitivity (or true-positive rate) on
the Y -axis as a function of 1− specificity (the false-positive rate) on the X -axis. An
ideal test is one that reaches the upper left corner of the graph (100% true-positives
and no false-positives). A worthless test follows the diagonal from the lower left
to the upper right corners: at any cutoff the true-positive rate is the same as the
false-positive rate (Fig. 12.1). The area under the ROC curve, which thus ranges
from 0.5 for a useless test to 1.0 for a perfect test, is a useful summary of the overall
accuracy of a test and can be used to compare the accuracy of two or more tests.
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• Likelihood ratios. Although the information in a diagnostic test with continuous
or ordinal results can be summarized using sensitivity and specificity or ROC curves,
there is a better way. Likelihood ratios allow the investigator to take advantage of
all information in a test. For each test result, the likelihood ratio is the ratio of the
likelihood of that result in someone with the disease to the likelihood of that result
in someone without the disease.2

Likelihood ratio = P(Result|Disease)
P(Result|No Disease)

The P is read as ‘‘probability of’’ and the ‘‘|’’ is read as ‘‘given.’’ Thus
P(Result|Disease) is the probability of result given disease, and P(Result|No Dis-
ease) is the probability of that result given no disease. The likelihood ratio is a ratio
of these two probabilities.

The higher the likelihood ratio, the better the test result for ruling in a
diagnosis; a likelihood ratio greater than 100 is very high (and very unusual among
tests). On the other hand, the lower a likelihood ratio (the closer it is to 0), the
better the test result is for ruling out the disease. A likelihood ratio of 1 means that
the test result provides no information at all about the likelihood of disease.

An example of how to calculate likelihood ratios is shown in Table 12.3,
which presents results from the Pediatric Research in Office Settings Febrile Infant
study (10) on how well the white blood cell count predicted bacteremia or bacterial
meningitis in young, febrile infants. A white blood cell count that is either less
than 5,000 cells/mm3 or at least 15,000 cells/mm3 was more common among
infants with bacteremia or meningitis than among other infants. The calculation
of likelihood ratios simply quantifies this: 8% of the infants with bacteremia or
bacterial meningitis had less than 5,000 cells/mm3, whereas only 4% of those
without bacteremia or meningitis did. Therefore the likelihood ratio is 8%/4% = 2.

• Relative risks and risk differences. The analysis of studies of prognostic tests or
risk factors for disease is similar to that of other cohort studies. If everyone in
a prognostic test study is followed for a set period of time (say 3 years) with
few losses to follow-up, then the results can be summarized with absolute risks,
relative risks and risk differences. Especially when follow-up is complete and of short
duration, results of prognostic tests are sometimes summarized like diagnostic tests,
using sensitivity, specificity, predictive value, likelihood ratios and ROC curves.
On the other hand, when the study subjects are followed for varying lengths of

2For dichotomous tests the likelihood ratio for a positive test is

sensitivity
(1 − specificity)

and the likelihood ratio for a negative test is

(1 − sensitivity)
specificity

.

Detailed discussions of how to use likelihood ratios and prior information (the prior probability of disease) to estimate
a patient’s probability of disease after knowing the test result (the posterior probability) are available in standard
clinical epidemiology texts (7–9). The formula is

Prior odds × Likelihood Ratio = Posterior odds,

where prior and posterior odds are related to their respective probabilities by

odds = P
1 − P

,
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TABLE 12.3 Example of Calculation of Likelihood Ratios from a Study of
Predictors of Bacterial Meningitis or Bacteremia Among Young
Febrile Infants

White Blood
Cell Count

Meningitis or Bacteremia

(per mm3) Yes No Likelihood Ratio

<5,000 5 96
8% 4% 2.0

5,000–9,999 18 854
29% 39% 0.7

10,000–14,999 8 790
12% 36% 0.3

15,000–19,999 17 286
27% 13% 2.1

≥20,000 15 151
24% 7% 3.4

Total 63 2,177
100% 100%

time, a survival-analysis technique that accounts for the length of follow-up time is
preferable (11).

STUDIES OF THE EFFECT OF TEST RESULTS
ON CLINICAL DECISIONS

A test may be accurate, but if the disease is very rare, the test may be so seldom
positive that it is not worth doing in most situations. Another diagnostic test may
be positive more often but not affect clinical decisions because it does not provide
new information beyond what was already known from the medical history, physical
examination, or other tests. The study designs in this section address the yield of
diagnostic tests and their effects on clinical decisions.

Types of Studies
• Diagnostic yield studies. Diagnostic yield studies address such questions as the

following:
• When a test is ordered for a particular indication, how often is it abnormal?
• Can a test result be predicted from other information available at the time of

testing?
• What happens to patients with abnormal results? Do they appear to benefit?
Diagnostic yield studies estimate the proportion of positive tests among patients
with a particular indication for the test. Of course, showing that a test is often
positive is not sufficient to indicate the test should be done. However, a diagnostic
yield study showing a test is almost always negative may be sufficient to question its
use for that indication,
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For example, Siegel et al. (12) studied the yield of stool cultures in hospitalized
patients with diarrhea. Although not all patients with diarrhea receive stool cultures,
it seems reasonable to assume that those who do are, if anything, more likely to
have a positive culture than those who do not. Overall, only 40 (2%) of 1,964
stool cultures were positive. Moreover, none of the positive results were in the 997
patients who had been in the hospital for more than 3 days. Because a negative stool
culture is unlikely to affect management in these patients with a low likelihood of
bacterial diarrhea, it is of little value in that setting. Therefore, the authors were able
to conclude that stool cultures are unlikely to be useful in patients with diarrhea
who have been in the hospital for more than 3 days.

• Before/after studies of clinical decision making . These designs directly address the
effect of a test result on clinical decisions. The design generally involves a comparison
between what clinicians do (or say they would do) before and after obtaining results
of a diagnostic test. For example, Carrico et al. (13) prospectively studied the value
of abdominal ultrasound in 94 children with acute lower abdominal pain. They
asked the clinicians requesting the sonograms to record their diagnostic impression
and what their treatment would be if a sonogram were not available. After doing
the sonograms and providing the clinicians with the results, they asked again. They
found that sonographic information changed the initial treatment plan in 46% of
patients.
Of course (as discussed later), altering a clinical decision does not guarantee that a
patient will benefit. Therefore, if a study with this design shows effects on decisions,
it is most useful when the natural history of the disease and the efficacy of treatment
are clear. In the preceding example, there is very likely a benefit from changing
the decision from ‘‘discharge from hospital’’ to ‘‘laparotomy’’ in children with
appendicitis, or from ‘‘laparotomy’’ to ‘‘observe’’ in children with nonspecific
abdominal pain.

STUDIES OF FEASIBILITY, COSTS, AND RISKS OF TESTS

An important area for clinical research relates to the practicalities of diagnostic testing.
What proportion of patients will return a postcard with tuberculosis skin test results?
What proportion of colonoscopies are complicated by hypotension? What are the
medical and psychological effects of false-positive screening tests in newborns?

Design Issues
Studies of the feasibility, costs, and risks of tests are generally descriptive. The sampling
scheme is important because tests often vary among the people or institutions doing
them, as well as the patients receiving them.

Among studies that sample individual patients, several sampling schemes are
possible. A straightforward choice is to study everyone who receives the test, as in
a study of the return rate of postcards after tuberculosis skin testing. Alternatively,
for some questions, the subjects in the study may be only those with results that
were positive or falsely positive. For example, Bodegard et al. (14) studied families of
infants who had tested falsely positive on a newborn screening test for hypothyroidism
and found that fears about the baby’s health persisted for at least 6 months in almost
20% of the families.

Adverse effects can occur not just from false-positive results, but also from tests
in which the measurement may be correct but a patient’s reaction leads to a decrement
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in quality of life. Rubin and Cummings (15), for example, studied women who had
undergone bone densitometry to test for osteoporosis. They found that women who
had been told that their bone density was abnormal were much more likely to limit
their activities because of fear of falling.

Analysis
Results of these studies can usually be summarized with simple descriptive statistics
like means and standard deviations, medians, ranges, and frequency distributions.
Dichotomous variables, such as the occurrence of adverse effects, can be summarized
with proportions and their 95% CIs. For example, Waye et al. (16) reported that 3
of 2,097 ambulatory colonoscopies (0.14%; 95% CI, 0.030% to 0.042%) resulted in
hypotension that required intravenous fluids.

There are generally no sharp lines that divide tests into those that are or are
not feasible, or those that have or do not have an unacceptably high risk of adverse
effects. For this reason it is helpful in the design stage of the study to specify criteria
for deciding that the test is acceptable. What rate of follow-up would be insufficient?
What rate of complications would be too high?

STUDIES OF THE EFFECT OF TESTING ON OUTCOMES

The best way to determine the value of a medical test is to see whether patients who are
tested have a better outcome (e.g., live longer) than those who are not. Randomized
trials are the ideal design for making this determination, but trials of diagnostic
tests are often difficult to do. The value of tests is therefore usually estimated from
observational studies. The key difference between the designs described in this section
and the experimental and observational designs discussed elsewhere in this book is
that the predictor variable for this section is testing, rather than a treatment, risk
factor, or test result.

Designs
Testing itself is unlikely to have any direct benefit on the patient’s health. It is only
when a test result leads directly to the use of effective preventive or therapeutic
interventions that the patient may benefit. Therefore, one important caveat about
outcome studies of testing is that the predictor variable actually being studied is not
just a test (e.g., a fecal occult blood test), but everything that follows (e.g., procedures
for following up abnormal results, colonoscopy, etc.).

The outcome variable of these studies must be a measure of morbidity or mortality,
not simply a diagnosis or stage of disease. For example, showing that men who are
screened for prostate cancer have a greater proportion of cancers diagnosed at an
early stage does not by itself establish the value of screening. It is possible that some
of those cancers would not have caused any problem if they had not been detected or
that treatment of the detected cancers is ineffective.

The outcome should be broad enough to include plausible adverse effects of
testing and treatment, and may include psychological as well as medical effects
of testing. Therefore, a study of the value of prostate-specific antigen screening
for prostate cancer should include treatment-related morbidity (e.g., impotence or
incontinence, perioperative myocardial infarction) and mortality. When many more
people are tested than are expected to benefit (as is usually the case), less severe adverse
outcomes among those without the disease may be important, because they will occur
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much more frequently. While negative test results may be reassuring and relieving
to some patients, in others the psychological effects of labeling or false-positive
results, loss of insurance, and troublesome (but nonfatal) side effects of preventive
medications may outweigh infrequent benefits.

• Observational studies. Observational studies are generally quicker, easier, and less
costly than experimental studies. However, they have important disadvantages as
well, especially because patients who are tested tend to differ from those who are
not tested in important ways that may be related to the risk of a disease or its
prognosis. For example, those getting the test may be at lower risk of an adverse
health outcome, because people who volunteer for medical tests and treatments
tend to be healthier than average, an example of volunteer bias. On the other
hand, those tested may be at higher risk, because patients are more likely to be
tested when they or their clinicians are concerned about a disease or its sequelae,
an example ofconfounding by indication for the test (Chapter 9).

An additional common problem with observational studies of testing is the
lack of standardization and documentation of any interventions or changes in
management that follow positive results. If a test does not improve outcome in
a particular setting, it could be because follow-up of abnormal results was poor,
because patients were not compliant with the planned intervention, or because the
particular intervention used in the study was not ideal.

Example 12.1 An Elegant Observational Study of a Screening Test

Selby et al. (17) did a nested case–control study in the Kaiser Permante Medical
Care Program to determine whether screening sigmoidoscopy reduces the risk of death
from colon cancer. They compared the rates of previous sigmoidoscopy among patients
who had died of colon cancer with controls who had not. They found an adjusted
odds ratio of 0.41 (95% CI, 0.25 to 0.69), suggesting that sigmoidoscopy resulted in
a 60% decrease in the death rate from cancer of the rectum and distal colon.

A potential problem is that patients who undergo sigmoidoscopy may differ
in important ways from those who do not, and that those differences might
be associated with a difference in the expected death rate from colon can-
cer. To address this possible confounding, Selby et al. examined the appar-
ent efficacy of sigmoidoscopy at preventing death from cancers of the proximal
colon, above the reach of the sigmoidoscope. If patients who underwent sig-
moidoscopy were less likely to die of colon cancer for other reasons, then sig-
moidoscopy would appear to be protective against these cancers as well. How-
ever, sigmoidoscopy had no effect on mortality from cancer of the proximal
colon (adjusted odds ratio = 0.96; 95% CI, 0.61 to 1.50), suggesting that con-
founding was not the reason for the apparent benefit in distal colon cancer
mortality.

• Clinical trials. The most rigorous design for assessing the benefit of a diagnostic
test is a clinical trial, in which subjects are randomly assigned to receive or not
to receive the test. Presumably the result of the test is then used to guide clinical
management. A variety of outcomes can be measured and compared in the two
groups. Randomized trials minimize or eliminate confounding and selection bias
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and allow measurement of all relevant outcomes such as mortality, morbidity, cost,
and satisfaction. Standardizing the testing and intervention process enables others
to reproduce the results.

Unfortunately, randomized trials of diagnostic tests are often not practical,
especially for diagnostic tests already in use in the care of sick patients. Randomized
trials are generally more feasible and important for tests that might be used in large
numbers of apparently healthy people, such as new screening tests.

Randomized trials, however, may bring up ethical issues about withholding
potentially valuable tests. Rather than randomly assigning subjects to undergo a test
or not, one approach to minimizing this ethical concern is to randomly assign some
subjects to receive an intervention that increases the use of the test, such as frequent
postcard reminders and assistance in scheduling. The primary analysis must still
follow the ‘‘intention-to-treat’’ rule—that is, the entire group that was randomized
to receive the intervention must be compared with the entire comparison group.
However, this rule will tend to create a conservative bias; the observed efficacy of
the intervention will underestimate the actual efficacy of the test, because some
subjects in the control group will get the test and some subjects in the intervention
group will not. This problem can be addressed in secondary analyses that assume
all the difference between the two groups is due to different rates of testing. The
actual benefits of testing in the subjects as a result of the intervention can then be
estimated algebraically (18).

Analysis
Analysis of studies of the effect of testing on outcome are those appropriate to the
specific design used—odds ratios for case–control studies, and risk ratios or hazard
ratios for cohort studies or experiments. A convenient way to express the results is to
project the results of the testing procedure to a large cohort (e.g., 100,000), listing
the number of initial tests, follow-up tests, people treated, side effects of treatment,
costs, and lives saved.

PITFALLS IN THE DESIGN OR ANALYSIS
OF DIAGNOSTIC TEST STUDIES

As with other types of clinical research, errors in the design or analysis of studies of
diagnostic tests are common. Some of the most common and serious of these, along
with steps to avoid them, are outlined below.

Verification Bias 1: Selective Application of a Single Gold Standard
A common sampling strategy for studies of medical tests is to study (either prospec-
tively or retrospectively) patients at risk for disease who receive the gold standard for
diagnosis. However, this causes a problem if the findings being studied are also used
to decide who gets the gold standard. For example, consider a study of predictors of
fracture in children presenting to the emergency department with ankle injuries, in
which only children who had x-rays for ankle injuries were included. If those without
a particular finding, for example, ankle swelling, were less likely to get an x-ray,
both false-negatives and true-negatives (c and d in the 2 × 2 table in Table 12.4)
would be reduced, thereby increasing sensitivity (a/(a + c)) and decreasing specificity
(d/(d + b)), as shown in Table 12.4. This bias, called verification bias, work-up
bias, or referral bias, is illustrated numerically in Appendix 12B.
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TABLE 12.4 How Verification Bias
Leads to Overestimation
of Sensitivity and
Underestimation of
Specificity, by
Decreasing the Number
of Subjects in the Study
with No Swelling, and
Hence Both Cells c
and d

Fracture No Fracture

Swelling a b

No swelling c ↓ d ↓

This type of verification bias can be avoided by using strict criteria for application
of the gold standard that do not include the test being studied. Another strategy is
to use a different gold standard for those in whom the usual gold standard is not
indicated. However, this can cause other problems as discussed below.

Verification Bias 2: Different Gold Standards for Those Testing Positive
and Negative
A different type of verification bias, which might be called double gold standard bias,
occurs when different gold standards are used for those with positive and negative
test results. An example is the previously mentioned study of mammography (5) in
which the gold standard for those with positive mammograms was a biopsy, whereas
for those with negative mammograms it was a period of follow-up to see if a cancer
became evident. Having two different gold standards for the disease is a problem if
the gold standards might not agree with one another.

Another example is a study of ultrasonography to diagnose intussusception in
young children (19). All children with a positive ultrasound scan for intussusception
received the gold standard, a contrast enema. In contrast, the majority of children
with a negative ultrasound were observed in the emergency room and intussusception
was ruled out clinically. For cases of intussusception that resolve spontaneously, the
two gold standards would give different results: the contrast enema would be positive,
and clinical follow-up would be negative. If these cases have a negative ultrasound, the
double gold standard can turn what would appear to be a false-negative result (when
the ultrasound is negative and the contrast enema is positive) into a true negative
(when the ultrasound is negative and clinical follow-up reveals no intussusception).
This increases both sensitivity and specificity (Table 12.5). A numerical example of
this double gold standard type of verification bias is provided in Appendix 12.C.

Because sometimes using an invasive gold standard for everyone is not feasible,
investigators considering a study with two gold standards should make every effort to
use other data sources (e.g., autopsy studies examining the prevalence of asymptomatic
cancers among patients who died from other causes in a study of a cancer screening
test) to assess the degree to which double gold standard bias might threaten the
validity of the study.
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TABLE 12.5 How Using Clinical Follow-up as the Gold
Standard for Children with a Negative
Ultrasound Moves Self-resolving Cases of
Intussusception From Cell c to Cell d and
Changes False-Negatives into
True-Negatives

Intussusception No Intussusception

Ultrasound + a b

Ultrasound − dc

Inadequate Sample Size
A basic principle is that if there are plenty of instances of what the investigator is
trying to measure, the sample size is likely to be adequate. However, if the disease
or outcome being tested for is rare, this may require testing a very large number of
people. Many laboratory tests, for example, are not expensive, and a yield of 1% or
less might justify doing them, especially if they can diagnose a serious treatable illness.
Therefore, to conclude that a test is not useful, the upper confidence interval for the
yield should be low enough to exclude a clinically significant yield.

For example, Sheline and Kehr (20) retrospectively reviewed routine admission
laboratory tests, including the Venereal Disease Research Laboratory (VDRL) test for
syphilis among 252 psychiatric patients and found that the laboratory tests identified
1 patient with previously unsuspected syphilis. If this patient’s psychiatric symptoms
were indeed due to syphilis, it would be hard to argue that it was not worth the
$3,186 spent on VDRLs to make this diagnosis. But if the true rate of unsuspected
syphilis were close to the 0.4% seen in this study, a study of this sample size could
easily have found no cases. In that situation, the upper limit of the 95% CI would have
been 1.2%. This confidence limit would not be low enough to exclude a clinically
significant yield of the VDRL in such psychiatric patients.

Inappropriate Exclusion
When calculating proportions, such as the proportion of subjects with a positive test
result in a diagnostic yield study, excluding subjects from the numerator without
excluding similar subjects from the denominator is a common error. The basic rule is
that if any subjects who test positive are excluded from the numerator, similar subjects
must also be excluded from the denominator. In a study of routine laboratory tests
in emergency department patients with new seizures (21), for example, 11 of 136
patients (8%) had a correctable laboratory abnormality (hypoglycemia, hypocalcemia,
etc.) as a sole or contributory cause for their seizure. In 9 of the 11 patients, however,
the abnormality was suspected on the basis of the history or physical examination.
The authors therefore reported that only 2 of 136 patients (1.5%) had abnormalities
not suspected on the basis of the history or physical examination. But if all patients
with suspected abnormalities are excluded from the numerator, then similar patients
must be excluded from the denominator as well. The correct denominator for this
proportion is therefore not all 136 patients tested, but only those who were not
suspected of having any laboratory abnormalities on the basis of their medical history
or physical examination.
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Institution-Specific Results
Generalizability is especially important for tests that require skill or training to do
or interpret. For example, just because pathologists in a particular institution cannot
agree on what constitutes an abnormal Pap smear does not mean that pathologists
elsewhere would have the same problem. In some cases, investigators are motivated
to study questions that seem particularly problematic in their own institution. The
results obtained may be internally valid but of little interest elsewhere.

Nongeneralizable findings can also occur in institutions that do exceptionally
well. For example, it is possible that the value of abdominal ultrasonography in
children with belly pain reported by Carrico et al. (13) is greater than would be found
elsewhere, because of the particular skill of their ultrasonographers.

Dropping Borderline or Uninterpretable Results
Sometimes a test may fail to give any answer at all, such as if the assay failed, the
test specimen deteriorated, or the test result fell into a gray zone of being neither
positive nor negative. It is not usually legitimate to ignore these problems, but how
to handle them depends on the specific research question and study design. In studies
dealing with the expense or inconvenience of tests, failed attempts to do the test are
clearly important results. On the other hand, for most other studies of diagnostic
tests, instances of failure of the test to provide a result should be divided into those
that likely are and are not related to characteristics of the patient. Thus patients whose
specimens were lost or in whom the assays failed for reasons unrelated to the patient
can generally be excluded without distorting results.

Patients with ‘‘nondiagnostic’’ imaging studies or a borderline result on a
test need to be counted as having had that specific result on the test. In effect,
this may change a dichotomous test to an ordinal one—positive, negative, and
indeterminate. ROC curves can then be drawn and likelihood ratios can be calculated
for the ‘‘indeterminate’’ as well as positive and negative results.

SUMMARY

1. The usefulness of medical tests can be assessed using designs that address a series
of increasingly stringent questions (Table 12.1). For the most part, standard
observational designs provide descriptive statistics of test characteristics with
confidence intervals.

2. The subjects for a study of a diagnostic test should be chosen from patients who
have a spectrum of disease and nondisease that reflects the anticipated use of the
test in clinical practice.

3. If possible, the investigator should blind those interpreting the test results from
other information about the patients being tested.

4. Measuring the reproducibility of a test, including the intra- and interobserver
variability, is often a good first step in evaluating a test.

5. Studies of the accuracy of tests require a gold standard for determining if a
patient has, or does not have, the disease or outcome being studied.
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6. The results of studies of the accuracy of diagnostic tests can be summarized using
sensitivity, specificity, predictive value, ROC curves, and likelihood ratios.
Studies of the value of prognostic tests can be summarized with risk ratios or
hazard ratios.

7. Because of the difficulty of demonstrating that doing a test improves outcome,
studies of the effects of tests on clinical decisions and the accuracy, feasibility,
costs, and risks of tests are often most useful when they suggest a test should not
be done.

8. The most rigorous way to study a diagnostic test is to do a clinical trial, in which
subjects are randomly assigned to receive or not to receive the test, and outcomes,
such as mortality, morbidity, cost, and satisfaction, are compared. However, there
may be practical and ethical impediments to such trials; with appropriate attention
to possible biases and confounding, observational studies of these questions can
be helpful.

APPENDIX 12A

Calculation of Kappa to Measure Interobserver Agreement
When there are two observers or when the same observer repeats a measurement
on two occasions, the agreement can be summarized in a ‘‘c by c’’ table, where c
is the number of categories that the measurement can have. For example, consider
two observers listening for an S4 gallop on cardiac examination (Table 12A.1). They
record it as either present or absent. The simplest measure of interobserver agreement
is the concordance rate—that is, the proportion of observations on which the two
observers agree. The concordance rate can be obtained by summing the numbers
along the diagonal from the upper left to the lower right and dividing it by the total
number of observations. In this example, out of 100 patients there were 10 patients in
whom both observers heard a gallop, and 75 in whom neither did, for a concordance
rate of (10 + 75)/100 = 85%.

When the observations are not evenly distributed among the categories (e.g.,
when the proportion ‘‘abnormal’’ on a dichotomous test is substantially different
from 50%), the concordance rate can be misleading. For example, if the two observers
each hear a gallop on five patients but do not agree on which patients have the gallop,
their observed agreement will still be 90% (Table 12A.2). In fact, if two observers

TABLE 12A.1 Interobserver Agreement on Presence of an S4 Gallop
Gallop Heard
by Observer 1

No Gallop Heard
by Observer 1 Total, Observer 2

Gallop heard by observer 2 10 5 15

No gallop heard by observer 2 10 75 85

Total, observer 1 20 80 100

Note: The concordance rate is the percentage of the time two observers agree with one another. In this example, both observers
either heard or did not hear the gallop in (10 + 75)/100 = 85% of cases.
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TABLE 12A.2 High Agreement When Both Observers Know Gallops are
Uncommon

Gallop Heard
by Observer 1

No Gallop Heard
by Observer 1 Total, Observer 2

Gallop heard by observer 2 0 5 5

No gallop heard by observer 2 5 90 95

Total, observer 1 5 95 100

Note: When both observers know that an abnormality is uncommon, they will have a high concordance rate, even if they do not
agree on which subjects are abnormal. In this case the observers agree 90% of the time, although they do not agree at all on
who has a gallop.

both know an abnormality is uncommon, they can have nearly perfect agreement just
by never or rarely saying that it is present.

To get around this problem, another measure of interobserver agreement, called
kappa (κ), is sometimes used. Kappa measures the extent of agreement beyond what
would be expected from knowing the ‘‘marginal values’’ (i.e., the row and column
totals). Kappa ranges from −1 (perfect disagreement) to 1 (perfect agreement). A
kappa of 0 indicates that the amount of agreement was exactly that expected by
chance. κ is estimated as:

Observed agreement (%) − Expected agreement (%)
100% − Expected agreement (%)

The ‘‘expected’’ proportion in each cell is simply the proportion in that cell’s row
(i.e., the row total divided by the sample size) times the proportion in that cell’s
column (i.e., the column total divided by the sample size). The expected agreement
is obtained by adding the expected proportions in the cells along the diagonal of the
table, in which the observers agreed.

For example, in Table 12A.1, the observers appear to have done quite well: they
have agreed 85% of the time. But how well did they do compared with agree-
ment by chance? By chance alone they will agree about 71% of the time: (20% ×
15%) + (80% × 85%) = 71%. Because the observed agreement was 85%, kappa is
(85% − 71%)/(100% − 71%) = 0.48—respectable, if somewhat less impressive than
85% agreement. But now consider Table 12A.2. Although the observed agreement was
90%, the expected agreement is (5% × 5%) + (95% × 95%) = 90.5%. Therefore, kappa
is (90% − 90.5%)/(100% − 90.5%) = −0.05%—a tiny bit worse than chance alone.

When there are more than two categories of variables, it is important to distinguish
between ordinal variables, which are intrinsically ordered, and nominal variables, which
are not. For ordinal variables, kappa fails to capture all the information in the data,
because it does not give partial credit for coming close. For example, if a radiograph
can be classified as ‘‘normal,’’ ‘‘questionable,’’ and ‘‘abnormal,’’ having one observer
call it normal and the other call it questionable is better agreement than if one says
it is normal and the other says it is abnormal. To give credit for partial agreement, a
weighted kappa3 should be used.

3The formula for weighted kappa is the same as that for regular kappa except that observed and expected agreement are
summed not just along the diagonal, but for the whole table, with each cell first multiplied by a weight for that cell. Any weighting
system can be used, but the most common are wij = 1 − |i − j |/(c − 1) and wij = 1 − [(i − j)/(c − 1)]2 where wij is the
weight for the number in i th row and the j th column and c is the number of categories.
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APPENDIX 12B

Numerical Example of Verification Bias: 1
Consider two studies examining ankle swelling as a predictor of fractures in children
with ankle injuries. The first study is a consecutive sample of 200 children. In this
study, all children with ankle injuries are x-rayed, regardless of swelling. The sensitivity
and specificity of ankle swelling are 80% and 75%, as shown in Table 12B.1:

TABLE 12B.1 Ankle Swelling as a Predictor
of Fracture Using a Consecutive
Sample

Fracture No Fracture

Swelling 32 40

No swelling 8 120

Total 40 160

Sensitivity = 32/40 =80%

Specificity = 120/160 =75%

The second study is a selected sample, in which only half the children without
ankle swelling are x-rayed. Therefore, the numbers in the ‘‘No swelling’’ row will
be reduced by half. This raises the apparent sensitivity from 32/40 (80%) to 32/36
(89%) and lowers the apparent specificity from 120/160 (75%) to 60/100 (60%), as
shown in Table 12B.2:

TABLE 12B.2 Verification Bias: Ankle Swelling as a Predictor
of Fracture Using a Selected Sample

Fracture No Fracture

Swelling 32 40

No swelling 4 60

Total 36 100

Sensitivity = 32/36 =89%

Specificity = 60/100 =60%

Note: If we knew that the children with no swelling who received an x-ray were otherwise
similar to those who did not receive an x-ray, we could estimate the verification bias and correct
for it algebraically. In practice, the children who receive an x-ray are probably more likely to
have a fracture than those who do not, so the effect of verification bias on sensitivity in the
example above is likely a worst-case scenario. (That is, if the clinicians were good at predicting
who did not have a fracture, all those not x-rayed would not have had any fractures, and the
sensitivity of the test would not have been biased upwards. Specificity, however, would still be
underestimated.)
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APPENDIX 12C

Numerical Example of Verification Bias: 2
Results of the study by Eshed et al. (19) of ultrasonography to diagnose intussuscep-
tion are shown in Table 12C.1:

TABLE 12C.1 Results of a Study of Ultrasound Diagnosis
of Intussusception

Intussusception No Intussusception

Ultrasound + 37 7

Ultrasound − 3 104

Total 40 111

Sensitivity = 37/40 =93%

Specificity = 104/111 =94%

The 104 subjects with a negative ultrasound listed as having ‘‘No Intussus-
ception’’ actually included 86 who were followed clinically and did not receive a
contrast enema. If about 10% of these subjects (i.e., nine children) actually had an
intussusception that resolved spontaneously, but that would still have been identified
if they had a contrast enema, and all subjects had received a contrast enema, those
nine children would have changed from true-negatives to false-negatives, as shown in
Table 12C.2:

TABLE 12C.2 Effect on Sensitivity and Specificity if
Nine Children with Spontaneously
Resolving Intussusception had Received
the Contrast Enema Gold Standard
Instead of Clinical Follow-up

Intussusception No Intussusception

Ultrasound + 37 7

Ultrasound − 3 + 9 = 12 104 − 9 = 95

Total 49 102

Sensitivity = 37/49 =76%

Specificity = 95/102 =93%

Now consider the 37 subjects with positive ultrasound scans, who had in-
tussusception based on their contrast enema. Suppose about 10% of those intus-
susceptions would have resolved spontaneously, if given the chance. Then about
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four children would change from true-positives to false-positives, is shown in
Table 12C.3:

TABLE 12C.3 Effect on Sensitivity and Specificity if Four
Children with Spontaneously Resolving
Intussusception had Received the Clinical
Follow-up Gold Standard Instead of the
Contrast Enema

Intussusception No Intussusception

Ultrasound + 37 − 4 = 33 7 + 4 = 11

Ultrasound − 3 104

Total 36 115

Sensitivity = 33/36 =92%

Specificity = 104/115 =90%

Therefore, for spontaneously resolving cases of intussusception, the ultrasound
scan will appear to give the right answer whether it is positive or negative, increasing
both sensitivity and specificity.
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13 Utilizing Existing

Databases

Deborah Grady and Norman Hearst

Many research questions can be answered quickly and efficiently using data that
have already been collected. There are three general approaches to using existing
data. Secondary data analysis is the use of existing data to investigate research
questions other than the main ones for which the data were originally gathered.
Ancillary studies add one or more measurements to a study, often in a subset of
the participants, to answer a separate research question. Systematic reviews combine
the results of multiple previous studies of a given research question, often including
calculation of a summary estimate of effect that has greater precision than the individual
study estimates. Making creative use of existing data is a fast and effective way for new
investigators with limited resources to begin to answer important research questions.

ADVANTAGES AND DISADVANTAGES

The main advantages of using existing data are speed and economy. A research ques-
tion that might otherwise require much time and money to investigate can sometimes
be answered rapidly and inexpensively. For example, in the Multiple Risk Factor
Intervention Trial (MRFIT), a large heart disease prevention trial in men, information
about the smoking habits of the wives of the study subjects was recorded to examine
whether this influenced the men’s ability to quit smoking. After the study was over,
one of the investigators realized that the data provided an opportunity to investigate
the health effects of passive smoking—a new finding at the time. A twofold excess in
the incidence of heart disease was found in nonsmoking men married to smoking wives
when compared with similar nonsmoking men married to nonsmoking wives (1).

Existing data sets also have disadvantages. The selection of the population to
study, which data to collect, the quality of data gathered, and how variables were
measured and recorded are all predetermined. The existing data may have been
collected from a population that is not ideal (men only rather than men and women),
the measurement approach may not be what the investigator would prefer (history of
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hypertension, a dichotomous historical variable, in place of actual blood pressure) and
the quality of the data may be poor (frequent missing or incorrect values). Important
confounders and outcomes may not have been measured or recorded. All these factors
contribute to the main disadvantage of using existing data: the investigator has little
or no control over what data have been collected, and how.

SECONDARY DATA ANALYSIS

Secondary data sets may come from previous research studies, medical records,
health care billing files, death certificates, and many other sources. Previous research
studies, often conducted at the investigator’s institution, may provide a rich source
of secondary data. Many studies collect more data than the investigators analyze and
contain interesting findings that have gone unnoticed. Access to such data is controlled
by the study’s principal investigator; the new researcher should therefore seek out
information about the work of senior investigators at his institution. One of the most
important ways a good mentor can be helpful to a new investigator is by providing
knowledge of and access to relevant data both from his own and other institutions.
Most large NIH-funded studies are now required to make their data publicly
available after a certain period of time. These data sets are usually available through
the Internet and can provide extensive data addressing related research questions.

Other sources of secondary data are large regional and national data sets that are
publicly available and do not have a principal investigator. Computerized databases
of this sort are as varied as the reasons people have for collecting information. We will
give several examples that deserve special mention, and readers can locate others in
their own areas of interest.

Tumor registries are government-supported agencies that collect complete
statistics on cancer incidence, treatment, and outcome in defined geographic areas.
These registries currently include about one quarter of the US population, and the
area of coverage is expected to increase during the coming years. One of the purposes
of these registries is to provide data to outside investigators. Combined data for
all the registries are available from the Surveillance, Epidemiology, and End Results
(SEER) Program. For example, investigators used the SEER registry of breast cancer
diagnoses to determine the specificity of screening mammography in a large cohort
of women in the San Francisco Bay Area. Women with negative mammograms in
whom cancer was not diagnosed within 13 months were considered to have had true
negative mammography (2).

Death certificate registries can be used to follow the mortality of any cohort.
The National Death Index includes all deaths in the United States since 1978.
This can be used to ascertain the vital status of subjects of an earlier study or of
those who are part of another data set that includes important predictor variables.
An example is the follow-up of men with coronary disease who were treated with
high-dose nicotinic acid (or placebo) to lower serum cholesterol in the Coronary
Drug Project. Although there was no difference in death rates at the end of the 5
years of randomized treatment, a mortality follow-up 9 years later using the National
Death Index revealed a significant difference (3). Whether an individual is alive or
dead is public information, so follow-up was available even for men who had dropped
out of the study.

The National Death Index can be used when any two of three basic individual
identifiers (name, birth date, and social security number) are known. Ascertainment
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of the fact of death is 99% complete with this system, and additional information
from the death certificates (notably cause of death) can then be obtained from state
records. On the state and local level, many jurisdictions now have computerized vital
statistics systems, in which individual data (such as information from birth or death
certificates) are entered as they are received.

Secondary data can be especially useful for studies to evaluate patterns of uti-
lization and clinical outcomes of medical treatment. This approach can complement
the information available from randomized trials and examine questions that trials
cannot answer. These types of existing data include administrative and clinical
databases such as those developed by Medicare, the Department of Veterans Af-
fairs, Kaiser Permanente Medical Group, the Duke Cardiovascular Disease Databank,
and registries such as the San Francisco Mammography Registry and the National
Registry of Myocardial Infarction (NRMI). Information from these sources (many of
which can be found on the Web) can be very useful for studying rare adverse events
and for assessing real-world utilization and effectiveness of an intervention that has
been shown to work in a clinical trial setting. For example, the NRMI was used to
examine risk factors for intracranial hemorrhage after treatment with recombinant
tissue-type plasminogen activator (tPA) for acute myocardial infarction (MI). The
registry included 71,073 patients who received tPA; among these, 673 had intracranial
hemorrhage confirmed by computed tomography or magnetic resonance imaging. A
multivariate analysis showed that a tPA dose exceeding 1.5 mg/kg was significantly
associated with developing an intracranial hemorrhage when compared with lower
doses (4). Given that the overall risk of developing an intracranial hemorrhage was
less than 1%, a clinical trial collecting primary data to examine this outcome would
have been prohibitively large and expensive.

Another valuable contribution from this type of secondary data analysis is a better
understanding of the difference between efficacy and effectiveness. The randomized
clinical trial is the gold standard for determining the efficacy of a therapy under
highly controlled circumstances in selected clinical settings. In the ‘‘real world,’’
however, patients and treatments are often different. The choice of drugs and dosage
by the treating physician and the adherence to medications by the patient are much
more variable. These factors often act to make the new therapy less effective than
demonstrated in trials. Assessing the effectiveness of treatments in actual practice
can sometimes be accomplished through studies using secondary data. For example,
primary angioplasty has been demonstrated to be superior to thrombolytic therapy in
clinical trials of treating patients with acute MI (5). But this may only be true when
success rates for angioplasty are as good as those achieved in the clinical trial setting.
Secondary analyses of community data sets have not found a benefit of primary
angioplasty over thrombolytic therapy (6,7).

Secondary data analysis is often the best approach for studying the utilization of
accepted therapies. Although clinical trials can demonstrate efficacy of a new ther-
apy, this benefit can only occur if the therapy is adopted by practicing physicians.
Understanding utilization rates, addressing regional variation and use in specific pop-
ulations (such as the elderly, ethnic minorities, the economically disadvantaged, and
women), can have major public health implications. For example, despite convincing
data that angiotensin converting enzyme inhibitors decrease mortality in patients with
MI, a secondary analysis of community data has shown that many patients with clear
indications for such therapy do not receive it (8).

Two data sets may also be linked to answer a research question. Investigators
who were interested in how military service effects health used the 1970 to 1972 draft
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lottery involving 5.2 million 20-year-old men who were assigned eligibility for military
service randomly by date of birth (the first data set) linked to later mortality based on
state death certificate registries (the second source of data). The predictor variable
(date of birth) was a randomly assigned proxy for military service during the Vietnam
era. Men who had been randomly assigned to be eligible for the draft had significantly
greater mortality from suicide and motor vehicle accidents in the ensuing 10 years (9).
The study was done for less than $2,000 (not including the investigators’ time), yet
it was a more unbiased approach to examining the effect of military service on specific
causes of subsequent death than other studies of this topic with much larger budgets.

When individual data are not available, aggregate data sets can sometimes be
useful. The term aggregate data means that information is available only for groups
of subjects (e.g., death rates from cervical cancer in each of the 50 states). With such
data, associations can only be measured among these groups by comparing group
information on a risk factor (such as tobacco sales) with the rate of an outcome. Studies
using aggregate data are called ecologic studies.

The advantage of aggregate data is its availability. Its major drawback is the
fact that associations are especially susceptible to confounding: groups tend to differ
from each other in many ways, not all of which are causally related. Furthermore,
associations observed in the aggregate do not necessarily hold for the individual. For
example, sales of cigarettes may be greater in states with high suicide rates, but the
individuals who commit suicide may not be the ones doing most of the smoking. This
situation is referred to as the ecologic fallacy. Aggregate data are most appropriately
used to test the plausibility of a new hypothesis or to generate new hypotheses.
Interesting results can then be pursued in another study that uses individual data.

Getting Started
After choosing a research topic and becoming familiar with the literature in that area
(including a thorough literature search and advice from a senior mentor), the next
step is to investigate whether the research question can be addressed with an existing
database. The help of a senior colleague can be invaluable in finding an appropriate
data set. An experienced researcher has defined areas of interest in which he stays
current and is aware of important data sets and the investigators who control these
data, both at his own institution and elsewhere. This person can help identify and
gain access to the appropriate database. Often, the research question needs to be
altered slightly (by modifying the definition of the predictor or outcome variables, for
example) to fit the available data.

The best solution may be close at hand, a database at the home institution. For
example, a University of California, San Francisco (UCSF) fellow who was interested
in the role of lipoproteins in coronary disease noticed that one of the few interventions
known to lower the level of lipoprotein(a) was estrogen. Knowing that the Heart and
Estrogen/Progestin Replacement Study (HERS), a major clinical trial of hormone
treatment to prevent coronary disease, was being managed at UCSF, the fellow
approached the investigators with his interest. Because no one else had specifically
planned to examine the relationship between this lipoprotein, hormone treatment
and coronary heart disease events, the fellow designed an analysis and publication
plan. After receiving permission from the HERS study leadership, he worked with
coordinating center statisticians, epidemiologists, and programmers to carry out an
analysis that he subsequently published in a leading journal (10).

Sometimes a research question can be addressed that has little to do with the
original study. For example, another fellow from UCSF was interested in the value of
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repeated screening Pap tests in women over 65 years old. He realized that the mean
age of participants in the HERS trial was 67 years, that participants were required to
have a normal Pap test to enter and then received screening Pap tests annually during
follow-up. By following up on Pap test outcomes, he was able to document that 110
Pap tests were abnormal among over 2500 women screened over a 2-year period,
and only one woman was ultimately found to have abnormal follow-up histology.
Therefore, all but one of the abnormal Pap tests were falsely positive (11). This study
strongly influenced the US Preventive Services Task Force’s current recommendation
that Pap tests should not be performed in low-risk women over age 65 with previous
normal tests.

Sometimes it is necessary to venture further afield. Working from a list of
predictor and outcome variables whose relation might help to answer the research
question, an investigator can seek to locate databases that include these variables.
Phone calls or e-mail messages to the authors of previous studies or to government
officials might result in access to files containing useful data. It is essential to conquer
any anxiety that the investigator may feel about contacting strangers to ask for help.
Most people are surprisingly cooperative, either by providing data themselves or by
suggesting other places to try.

Once the data for answering the research question have been located, the
next challenge is to obtain permission to use them. It is a good practice to use
official letterhead on correspondence and to adopt any institutional titles that are
appropriate. Young investigators should determine if their mentors are acquainted
with the investigators who control the database, as an introduction may be more
effective than a cold contact. It is generally most effective to work with an investigator
who is interested in the research topic and involved in the study whose database you
would like to examine. This investigator can facilitate access to the data, assure that
you understand the study methods and how the variables were measured, and often
becomes a valued colleague and collaborator. Databases that result from multicenter
studies and clinical trials generally have clear mechanisms for obtaining access to the
data that include the requirement for a written analysis proposal and approval by an
analysis or publications committee.

The investigator should be very specific about what information is sought and
confirm the request in writing. It is a good idea to keep the size of the request
to a minimum and to offer to pay any cost of preparing the data. If the data set is
controlled by another group of researchers, the investigator can suggest a collaborative
relationship. In addition to providing an incentive to share the data, this can engage
a coinvestigator who is familiar with the database. It is wise to clearly define such a
relationship early on, including who will be first author of the planned publications.
Important arrangements of this sort often benefit from a face-to-face meeting.

ANCILLARY STUDIES

Research with secondary data takes advantage of the fact that the data needed to
answer a research question are already available. In an ancillary study, the investigator
adds one or several measurements to an existing study to answer a different research
question. For example, in the HERS trial of the effect of hormone therapy on risk
for coronary events in 2,763 elderly women, an investigator added measurement of
the frequency and severity of urinary incontinence. Adding a one-page questionnaire
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created a large trial of the effect of hormone therapy on urinary incontinence, with
little additional time or expense (12).

Ancillary studies have many of the advantages of secondary data analysis with
fewer constraints. They are both inexpensive and efficient, and the investigator can
design a few key ancillary measurements specifically to answer the research question.
Ancillary studies can be added to any type of study, including cross-sectional and
case–control studies, but large prospective cohort studies and randomized trials are
particularly well suited to such studies.

Ancillary studies in randomized trials have the problem that the measurements
may be most informative when added before the trial begins, and it may be difficult
for an outsider to identify trials in the planning phase. Even when a variable was not
measured at baseline, however, a single measurement during or at the end of the trial
can produce useful information. By adding cognitive function measures at the end
of the HERS trial, the investigators were able to compare the cognitive function of
elderly women treated with hormone therapy for 4 years with the cognitive function
of those treated with placebo (13).

A good opportunity for ancillary studies is provided by the banks of stored
serum, DNA, images, and so on, that are found in most large clinical trials and
cohort studies. The opportunity to propose new measurements using these specimens
can be an extremely cost-effective approach to answering a novel research question,
especially if it is possible to make these measurements on a subset of specimens using
a nested case–control or case–cohort design (Chapter 7). In HERS, for example,
genetic analyses of fewer than 100 cases and controls showed that the excess number
of thromboembolic events in the hormone-treated group was not due to an interaction
with factor V Leiden (14).

Getting Started
Opportunities for ancillary studies should be actively pursued, especially by new
investigators with limited time and resources. A good place to start is to identify
studies with research questions that include either the predictor or the outcome
variable of interest. For example, an investigator interested in the effect of weight loss
on pain associated with osteoarthritis might start by identifying trials of interventions
(such as diet, exercise, behavior change, or drugs) for weight loss. Such studies can
be identified by searching lists of studies funded by the federal government, by
contacting pharmaceutical companies that manufacture drugs for weight loss, and
by talking with experts in weight loss who are familiar with ongoing studies. To
create an ancillary study, the investigator would simply add a measure of arthritis
symptoms among subjects enrolled in these studies. Alternatively, he might identify
studies that have joint pain as an outcome, and add change in weight as an ancillary
measure.

After identifying a study that provides a good opportunity for ancillary mea-
sures, the next step is to obtain the cooperation of the study investigators. Most
researchers will consider adding brief ancillary measures to an established study
if they address an important question and do not substantially interfere with
the conduct of the main study. Investigators will be reluctant to add measures
that require a lot of the participant’s time (cognitive function testing) or are
invasive and unpleasant (colonoscopy) or costly (positron emission tomography scan-
ning).

Generally, formal permission from the principal investigator or the appropriate
study committee is required to add an ancillary study. Most large, multicenter studies
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have established procedures requiring a written application. The proposed ancillary
study is generally reviewed by a committee that can approve, reject, or revise the
ancillary study. Many ancillary measures require funding, and the ancillary study
investigator must find a way to pay these costs. Of course, the cost of an ancillary
study is much less than the cost of conducting the same trial independently. Some
large studies may have their own mechanisms for funding ancillary studies, especially
if the research question is important and considered relevant by the funding agency.
The NIH has recently issued several requests for proposals to add ancillary studies to
large NIH-funded trials.

The disadvantages of ancillary studies are few. If the main study is already in
progress, new variables can be added, but variables already being measured cannot be
changed. In some cases there may be practical problems in obtaining permission from
the investigators or sponsor to perform the ancillary study, training those who will
make the measurements, or obtaining separate informed consent from participants.
Because the ancillary study investigator may not have designed or conducted the main
study, it may also be difficult to obtain access to the full database for analysis. These
issues, including a clear understanding of authorship of scientific papers that result
from the ancillary study and the rules governing their preparation and submission,
need to be clarified before starting the study.

SYSTEMATIC REVIEWS

Systematic reviews identify completed studies that address a research question, and
evaluate the results of these studies to arrive at conclusions about a body of research.
In contrast to other approaches to reviewing the literature, systematic reviews use a
well-defined and uniform approach to identify all relevant studies, display the results
of eligible studies, and, when appropriate, calculate a summary estimate of the overall
results. The statistical aspects of a systematic review (calculating summary effect
estimates and variance, statistical tests of heterogeneity, and statistical estimates of
publication bias) are called meta-analysis.

A systematic review can be a good opportunity for a new investigator. Although
it takes a surprising amount of time and effort, a systematic review generally does not
require substantial financial or other resources. Completing a good systematic review
requires that the investigator become intimately familiar with the literature regarding
the research question. For new investigators, this detailed knowledge of published
studies is invaluable. Publication of a good systematic review can also establish a
new investigator as an ‘‘expert’’ on the research question. Moreover, the findings,
with power enhanced by the larger sample size available from the combined studies
and peculiarities of individual study findings revealed by comparison with the others,
often represent an important scientific contribution. Systematic review findings can
be particularly useful for developing practice guidelines.

The elements of a good systematic review are listed in Table 13.1. Just as for
other studies, the methods for completing each of these steps should be described in
a written protocol before the systematic review begins.

The Research Question
As with any research, a good systematic review has a well-formulated, clear research
question that meets the usual FINER criteria (Chapter 2). Feasibility depends
largely on the existence of a set of studies of the question. The research question
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TABLE 13.1 Elements of a Good Systematic Review

1. Clear research question
2. Comprehensive and unbiased identification of completed studies
3. Definition of inclusion and exclusion criteria
4. Uniform and unbiased abstraction of the characteristics and findings of each study
5. Clear and uniform presentation of data from individual studies
6. Calculation of a summary estimate of effect and confidence interval based on the

findings of all eligible studies when appropriate
7. Assessment of the heterogeneity of the findings of the individual studies
8. Assessment of potential publication bias
9. Subgroup and sensitivity analyses

should describe the disease or condition of interest, the population and setting, the
intervention and comparison treatment (for trials), and the outcomes of interest. For
example, ‘‘Among persons admitted to an intensive care unit with unstable angina,
does treatment with aspirin plus intravenous heparin reduce the risk of myocardial
infarction and death during the hospitalization more than treatment with aspirin
alone (15)?’’

Identifying Completed Studies
Systematic reviews are based on a comprehensive and unbiased search for completed
studies. The search should follow a well-defined strategy established before the results
of the individual studies are known. The process of identifying studies for potential
inclusion in the review and the sources for finding such articles should be explicitly
documented before the study. Searches should not be limited to MEDLINE, which
includes only about half of all published English-language clinical research studies
and often does not list non-English-language references. Depending on the research
question, other electronic databases such as AIDSLINE, CANCERLIT, and EMBASE
can be included, as well as manual review of the bibliography of relevant published
studies, previous reviews, evaluation of the Cochran Collaboration database, and
consultation with experts. The search strategy should be clearly described so that
other investigators can replicate the search.

Criteria for Including and Excluding Studies
The protocol for a systematic review should provide a good rationale for including
and excluding studies, and these criteria should be established a priori. Criteria for
including or excluding studies from meta-analyses typically designate the period during
which studies were published, the population that is acceptable for study, the disease
or condition of interest, the intervention to be studied, whether blinding is required,
acceptable control groups, required outcomes, maximal acceptable loss to follow-up,
and minimal acceptable length of follow-up. Once these criteria are established, each
potentially eligible study should be reviewed for eligibility independently by two or
more investigators, with disagreements resolved by another reviewer or by consensus.
When determining eligibility, it may be best to blind reviewers to the date, journal,
authors, and results of trials.

Published systematic reviews should list studies that were considered for
inclusion and the specific reason for excluding a study. For example, if 30 potentially
eligible trials are identified, these 30 trials should be fully referenced and a reason
should be given for each exclusion.
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Collecting Data from Eligible Studies
Data should be abstracted from each study in a uniform and unbiased fashion. Gen-
erally, this is done independently by two or more abstractors using predesigned
forms that include variables that define eligibility criteria, design features, the popula-
tion included in the study, the number of individuals in each group, the intervention
(for trials), the main outcome, secondary outcomes, and outcomes in subgroups. The
data abstraction forms should include any data that will subsequently appear in the
text, tables or figures describing the studies included in the systematic review, or in
tables or figures presenting the outcomes. When the two abstractors disagree, a third
abstractor may settle the difference, or a consensus process may be used. The process
for abstracting data from studies for the systematic review should be clearly described
in the manuscript.

The published reports of some studies that might be eligible for inclusion in a
systematic review may not include important information, such as design features, risk
estimates, and standard deviations. Often it is difficult to tell if design features such
as blinding were not implemented or were just not described in the publication. The
reviewer can sometimes calculate relative risks and confidence intervals from crude
data presented from randomized trials, but it is generally unacceptable to calculate
risk estimates and confidence intervals based on crude data from observational studies
because there is not sufficient information to adjust for potential confounders. Every
effort should be made to contact the authors to retrieve important information that
is not included in the published description of a study. If this necessary information
cannot be calculated or obtained, the study findings are generally excluded.

Presenting the Findings Clearly
Systematic reviews generally include three types of information. First, important
characteristics of each study included in the systematic review are presented in tables.
These often include the study sample size, number of outcomes, length of follow-up,
characteristics of the population studied, and methods used in the study. Second, the
review displays the results of the individual studies (risk estimates, confidence intervals
or P values) in a table or figure. Finally, in the absence of significant heterogeneity (see
below), the meta-analysis presents summary estimates and confidence intervals based
on the findings of all the included studies as well as sensitivity and subgroup analyses.

The summary effect estimates represent a main outcome of the meta-analysis
but should be presented in the context of all the information abstracted from the
individual studies. The characteristics and findings of individual studies included in the
systematic review should be displayed clearly in tables and figures so that the reader
can form opinions that do not depend solely on the statistical summary estimates.

Meta-Analysis: Statistics for Systematic Reviews
• Summary effect estimate and confidence interval. Once all completed studies

have been identified, those that meet the inclusion and exclusion criteria have
been chosen, and data have been abstracted from each study, a summary estimate
(summary relative risk, summary odds ratio, etc.) and confidence interval may be
calculated. The summary effect is essentially an average effect weighted by the
inverse of the variance of the outcome of each study. Methods for calculating
the summary effect and confidence interval are discussed in Appendix 13.1. Those
not interested in the details of calculating mean weighted estimates from multiple
studies should at least be aware that different approaches can give different results.
For example, recent meta-analyses of the effectiveness of condoms for preventing
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heterosexual transmission of HIV have given summary estimates ranging from 80%
to 94% decrease in transmission rates, although they are based on the results of
almost identical sets of studies (16,17).

• Heterogeneity. Combining the results of several studies is not appropriate if the
studies differ in clinically important ways, such as the intervention, outcome,
controls, blinding, and so on. It is also inappropriate to combine the findings if
the results of the individual studies differ widely. Even if the methods used in the
studies appear to be similar, the fact that the results vary markedly suggests that
something important was different in the individual studies. This variability in the
findings of the individual studies is called heterogeneity (and the study findings are
said to be heterogeneous); if there is little variability, the study findings are said to
be homogeneous.

How can the investigator decide whether methods and findings are similar
enough to combine into summary estimates? First, he can review the individual
studies to determine if there are substantial differences in study design, study popu-
lations, intervention, or outcome. Then he can examine the results of the individual
studies. If some trials report a substantial beneficial effect of an intervention and
others report considerable harm, heterogeneity is clearly present. Sometimes, it is
difficult to decide if heterogeneity is present. For example, if one trial reports a
50% risk reduction for a specific intervention but another reports only a 30% risk
reduction, is heterogeneity present? Statistical approaches (tests of homogeneity)
have been developed to help answer this question (Appendix 13.1), but ultimately,
this requires judgment. Every reported systematic review should include some
discussion of heterogeneity and its effect on the summary estimates.

Assessment of Publication Bias
Publication bias occurs when published studies are not representative of all studies
that have been done, usually because positive results tend to be submitted and
published more often than negative results. There are two main ways to deal with
publication bias. Unpublished studies can be identified and the results included in
the summary estimate. Unpublished results may be identified by querying investigators
and reviewing abstracts, meeting presentations, and doctoral theses. The results of
unpublished studies can be included with those of the published trials in the overall
summary estimate, or sensitivity analyses can determine if adding these unpublished
results substantially changes the summary estimate determined from published results.
However, including unpublished results in a systematic review is problematic for
several reasons. It is often difficult to identify unpublished studies and even more
difficult to abstract the required data. Frequently, inadequate information is available
to determine if the study meets inclusion criteria for the systematic review or to
evaluate the quality of the methods. For these reasons, unpublished data are not often
included in meta-analyses.

Alternatively, the extent of potential publication bias can be estimated and
this information used to temper the conclusions of the systematic review. Publication
bias exists when unpublished studies have different findings from published studies.
Unpublished studies are more likely to be small (large studies usually get published,
regardless of the findings) and to have found no association between the risk factor or
intervention and the outcome (markedly positive studies usually get published, even
if small). If there is no publication bias, there should be no association between a
study’s size (or the variance of the outcome estimate) and findings. The degree of
this association is often measured using Kendall’s Tau, a coefficient of correlation. A
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strong or statistically significant correlation between study outcome and sample size
suggests publication bias. In the absence of publication bias, a plot of study sample
size versus outcome (e.g., log relative risk) should have a bell or funnel shape with
the apex near the summary effect estimate.

The funnel plot in Fig. 13.1A suggests that there is little publication bias because
small studies with both negative and positive findings were published. The plot in
Fig. 13.1B, on the other hand, suggests publication bias because the distribution
appears truncated in the corner that should contain small, negative studies.

When substantial publication bias is likely, summary estimates should not be
calculated or should be interpreted cautiously. Every reported systematic review
should include some discussion of potential publication bias and its effect on the
summary estimates.

Low
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FIGURE 13.1. A: Funnel plot that does not
suggest publication bias because there are studies
with a range of large and small sample sizes, and
low relative risks are reported by some smaller
studies. B: Funnel plot suggestive of publication
bias because the smaller studies primarily report
high relative risks.
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Subgroup and Sensitivity Analyses
Subgroup analyses may be possible using data from all or some subset of the studies
included in the systematic review. For example, in a systematic review of the effect
of postmenopausal estrogen therapy on endometrial cancer risk, some of the studies
presented the results by duration of estrogen use. Subgroup analyses of the results of
studies that provided such information demonstrated that longer duration of use was
associated with higher risk for cancer (18).

Sensitivity analyses indicate how ‘‘sensitive’’ the findings of the meta-analysis
are to certain decisions about the design of the systematic review or inclusion of
certain studies. For example, if the authors decided to include studies with a slightly
different design or methods in the systematic review, the findings are strengthened if
the summary results are similar whether or not the questionable studies are included.
Systematic reviews should generally include sensitivity analyses if any of the design
decisions appear questionable or arbitrary.

Garbage In, Garbage Out
The biggest drawback to a systematic review is that it can produce a reliable-appearing
summary estimate based on the results of individual studies that are of poor quality.
The process of assessing quality is complex and problematic. We favor relying on
relatively strict criteria for good study design when setting the inclusion criteria. If the
individual studies that are summarized in a systematic review are of poor quality, no
amount of careful analysis can prevent the summary estimate from being unreliable. A
special instance of this problem is encountered in systematic reviews of observational
data. If the results of these studies are not adjusted for potential confounding variables,
the results of the meta-analysis will also be unadjusted and potentially confounded.

SUMMARY

Secondary Data Analysis
1. Secondary data analysis has the advantage of greatly reducing the time and cost

of doing research and the disadvantage of providing the investigator little or no
control over the study population, design, or measurements.

2. One good source of data for secondary analysis is a completed research project
at the investigator’s institution; others are the large number of public databases
now available from many sources.

3. Large community-based data sets are useful for studying the effectiveness and
utilization of an intervention in the community, and for discovering rare adverse
events.

Ancillary Studies
1. A clever ancillary study can answer a new research question with little cost and

effort. As with secondary data analyses, the investigator cannot control the
design, but he is able to specify a few key additional measurements.

2. Good opportunities for ancillary studies may be found in cohort studies or
clinical trials that include either the predictor or outcome variable for the research
question of interest. Stored banks of serum, DNA, images, and so on, provide
the opportunity for cost-effective nested case–control and case-cohort designs.
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3. Most large studies have written policies that allow investigators (including outside
scientists) to propose and carry out ancillary studies.

Systematic Reviews
1. A good systematic review, like any other study, requires a complete written

protocol before the study begins. The protocol should include the research
question, methods for identifying all eligible studies, methods for abstracting
data from the studies, and statistical methods.

2. The statistical aspects of a systematic review, termed meta-analysis, include the
summary effect estimate and confidence interval, tests for evaluating hetero-
geneity and potential publication bias, and planned subgroup and sensitivity
analyses.

3. The characteristics and findings of individual studies should be displayed clearly
in tables and figures so that the reader can form opinions that do not depend solely
on the statistical summary estimates.

4. The biggest drawback to a systematic review is that the results can be no more
reliable than the quality of the studies on which it is based.

APPENDIX 13.1

Statistical Methods for Meta-Analysis

SUMMARY EFFECTS AND CONFIDENCE INTERVALS

The primary goal of meta-analysis is to calculate a summary effect size and confidence
interval. An intuitive way to do this is to multiply each trial relative risk (an effect
estimate) by the sample size (a weight that reflects the accuracy of the relative risk),
add these products, and divide by the sum of the weights. In actual practice, the
inverse of the variance of the effect estimate from each individual study (1/variancei)
is used as the weight for each study. The inverse of the variance is a better estimate of
the precision of the effect estimate than the sample size because it takes into account
the number of outcomes and their distribution. The weighted mean effect estimate is
calculated by multiplying each study weight (1/variancei) by the log of the relative
risk (or any other risk estimate, such as the log odds ratio, risk difference, etc.), adding
these products, and dividing by the sum of the weights. Small studies generally result
in a large variance (and a wide confidence interval around the risk estimate) and large
studies result in a small variance (and a narrow confidence interval around the risk
estimate). Therefore, in a meta-analysis, large studies get a lot of weight (1/small
variance) and small studies get little weight (1/big variance).

To determine if the summary effect estimate is statistically significant, the vari-
ability of the estimate of the summary effect is calculated. There are various formulas
for calculating the variance of summary risk estimates (19,20). Most use something
that approximates the inverse of the sum of the weights of the individual studies
(1/� weighti). The variance of the summary estimate is used to calculate the 95%
confidence interval around the summary estimate (±1.96 × variance1/2).
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RANDOM- VERSUS FIXED-EFFECT MODELS

There are multiple statistical approaches available for calculating a summary esti-
mate (20). The choice of statistical method is usually dependent on the type of
outcome (relative risk, risk reduction, difference score, etc.). In addition to the
statistical model, the investigator must also choose to use either a fixed-effect or
random-effect model. The fixed-effect model simply calculates the variance of a sum-
mary estimate based on the inverse of the sum of the weights of each individual
study. The random-effect model adds variance to the summary effect in proportion
to the variability of the results of the individual studies. Summary effect estimates are
generally similar using either the fixed- or random-effect model, but the variance of
the summary effect is greater in the random-effect model to the degree that the results
of the individual studies differ, and the confidence interval around the summary effect
is correspondingly larger, so that summary results are less likely to be statistically
significant. Many journals now require authors to use a random-effect model because
it is considered ‘‘conservative.’’ Meta-analyses should state clearly whether they used
a fixed- or random-effect model.

Simply using a random-effect model does not obviate the problem of hetero-
geneity. If the studies identified by a systematic review are clearly heterogeneous, a
summary estimate should not be calculated.

STATISTICAL TESTS OF HOMOGENEITY

Tests of homogeneity assume that the findings of the individual trials are the same
(the null hypothesis) and use a statistical test (test of homogeneity) to determine if
the data (the individual study findings) refute this hypothesis. A chi-square test is
commonly used (19). If the data do support the null hypothesis (P value ≥ 0.10),
the investigator accepts that the studies are homogeneous. If the data do not support
the hypothesis (P value < 0.10), he rejects the null hypothesis and assumes that the
study findings are heterogeneous. In other words, there are meaningful differences
in the populations studied, the nature of the predictor or outcome variables, or the
study results.

All meta-analyses should report tests of homogeneity with a P value. These
tests are not very powerful and it is hard to reject the null hypothesis and prove
heterogeneity when the sample size—the number of individual studies—is small. For
this reason, a P value somewhat higher than the typical value of 0.05 is typically used
as a cutoff. If substantial heterogeneity is present, it is inappropriate to combine the
results of trials into a single summary estimate.
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14 Addressing Ethical Issues

Bernard Lo

Research with human participants raises ethical concerns because people accept risks
and inconvenience primarily to advance scientific knowledge and to benefit others.
For the public to be willing to participate in clinical research and to provide public
funding, it needs to trust that such research is conducted according to strict ethical
standards (1).

In this chapter we begin by reviewing ethical principles and the federal regulations
about informed consent and institutional review boards (IRBs) in the United States.
We then turn to a number of ethical considerations including scientific misconduct,
conflict of interest, authorship, and confidentiality.

ETHICAL PRINCIPLES

Three ethical principles guide research with human participants (2). The principle of
respect for persons requires investigators to obtain informed consent from research
participants, to protect participants with impaired decision-making capacity, and to
maintain confidentiality. Research participants are not passive sources of data, but
individuals whose rights and welfare must be respected.

The principle of beneficence requires that the research design be scientifically
sound and that the risks of the research be acceptable in relation to the likely benefits.
Risks to participants include both physical harm from research interventions and also
psychosocial harm, such as breaches of confidentiality, stigma, and discrimination.
The risks of participating in the study can be reduced, for example, by screening
potential participants to exclude those likely to suffer adverse effects and monitoring
participants for adverse effects.

The principle of justice requires that the benefits and burdens of research be
distributed fairly. Vulnerable populations, such as people with poor access to health
care, those with impaired decision-making capacity, and institutionalized persons, may
lack the capacity to make informed and free choices about participating in research.
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Such populations may seem attractive to study if access and follow-up are convenient,
but vulnerable populations should not be targeted for research if other populations
would also be suitable participants.

Justice also requires equitable access to the benefits of research. Tradition-
ally, clinical research has been regarded as risky, and potential subjects have been
thought of as guinea pigs who needed protection from dangerous interventions that
would confer little or no personal benefit. Increasingly, however, clinical research
is regarded as providing access to new therapies for such conditions as HIV in-
fection, cancer, and organ transplantation. Patients who seek promising new drugs
for fatal conditions want increased access to clinical research, not greater protec-
tion (3). In addition, groups that are underrepresented on clinical research have
suboptimal clinical care because of a weak evidence base. Children, women, and
members of ethnic minorities historically have been underrepresented in clinical
research. NIH-funded clinical researchers must have adequate representation of chil-
dren, women, and members of ethnic minorities in studies, or else justify why they
are underrepresented.

FEDERAL REGULATIONS FOR RESEARCH ON HUMAN
SUBJECTS

Federal regulations are intended to assure that human subjects research is conducted
in an ethically acceptable manner (4). (Although the regulations refer to human
‘‘subjects,’’ the term ‘‘participants’’ is generally preferred today.) These regulations
apply to all federally funded research and to research that will be submitted to the U.S.
Food and Drug Administration (FDA) in support of a new drug or device application.
In addition, most universities require that all research on human subjects conducted
by affiliated faculty and staff comply with these regulations, including research funded
privately or conducted off-site.

These federal regulations define research as ‘‘systematic investigation designed
to develop or contribute to generalizable knowledge (4).’’ Research is therefore
distinguished from unproven clinical care that is directed toward benefiting the
individual patient and not toward publication. Human subjects are living individuals
about whom an investigator obtains either ‘‘data through intervention or interaction
with the individual’’ or ‘‘identifiable private information.’’ Private information
comprises (1) information that a person can reasonably expect is not being observed
or recorded and (2) information that has been provided for specific purposes and
that ‘‘the individual can reasonably expect will not be made public (e.g., a medical
record).’’ Information is identifiable if ‘‘the identity of the subject is or may be readily
ascertained by the investigator or associated with the information.’’ Research data
that is identified by a code is not considered individually identifiable if the key that
links data to participants is destroyed before the research begins or if the investigators
have no access to the key.

Researchers who have questions about these federal regulations should consult
their IRB or read the full text of federal regulations, which are available on the website
of the Office for Human Research Protections (OHRP) of the Department of Health
and Human Services.

The federal regulations provide two main protections for human subjects, IRB
approval and informed consent.
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Institutional Review Board Approval
Federal regulations require that research with human subjects be approved by an
IRB. The IRB mission is to ensure that the research is ethically acceptable and that
the welfare and rights of research participants are protected. Although most IRB
members are researchers, IRBs must also include community members and persons
knowledgeable about legal and ethical issues concerning research.

When approving a research study, the IRB must determine that:

• risks to participants are minimized,
• risks are reasonable in relation to anticipated benefits and the importance of the

knowledge that is expected to result,
• selection of participants is equitable,
• informed consent will be sought from participants or their legally authorized repre-

sentatives, and
• confidentiality is adequately maintained (4).

The IRB system is decentralized. Each local IRB implements federal regulations
using its own forms, procedures, and guidelines, and there is no appeal to a higher
body. As a result, protocol for a multicenter study may be approved by the IRB of
one institution but not by the IRB of another institution. Usually these differences
can be resolved through discussions or protocol modifications.

IRBs have been criticized for several reasons (5,6). They may place undue empha-
sis on consent forms and fail to scrutinize the research design. Review of the scientific
merit of the research is usually beyond the expertise of the IRB and is left to the
funding agency. Although IRBs need to review any protocol revisions and monitor
adverse events, typically they do not check whether research was actually carried out in
accordance with the approved protocols. Many IRBs lack the resources and expertise
to adequately fulfill their mission of protecting research participants. For these reasons,
federal regulations and IRB approval should be regarded only as a minimal ethical
standard for research. Ultimately, the judgment and character of the investigator
are the most essential element for assuring that research is ethically acceptable.

Exceptions to Institutional Review Board Review. Certain research may be exempted
from IRB review or may receive expedited review.

IRBs may be exempted from review of certain types of research, most commonly
surveys, interviews, and research with existing specimens, records, or data (Table 14.1).
The ethical justification for such exemptions is that the research involves low risk,
almost all people would consent to such research, and obtaining consent from each
subject would make such studies prohibitively expensive or difficult.

An IRB may allow certain research to undergo expedited review by a single
reviewer rather than the full committee (Table 14.2). The Department of Health and
Human Services publishes a list of types of research that are eligible for expedited
review (7), which can be obtained at its website.

The concept of minimal risk to participants plays a key role in federal regula-
tions, as indicated in Tables 14.1 and 14.2. Minimal risk is defined as that ‘‘ordinarily
encountered in daily life or during the performance of routine physical or psycholog-
ical tests.’’ Both the magnitude and probability of risk must be considered. The IRB
must judge whether a specific project may be considered minimal risk.
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TABLE 14.1 What Research is Exempt from Institutional Review Board Review?

1. Surveys, interviews, or observations of public behavior unless:
• subjects can be identified, either directly or through identifiers and
• disclosure of subjects’ responses could place them at risk for legal liability or damage their

reputation, financial standing, or employability.

2. Studies of existing records, data, or specimens, provided that:
• samples exist and are publicly available (e.g., data tapes released by state and federal agencies) or
• information is recorded by the investigator in such a manner that subjects cannot be identified,

either directly or through identifiers. Coded data is considered identifiable if the codes could be
broken with the cooperation of others.

3. Research on normal educational practices

The HIPAA Health Privacy Regulations. The federal Health Privacy Regulations
(commonly known as HIPAA, after the Health Insurance Portability and Account-
ability Act) require researchers to obtain permission from patients to use protected
health information in research (8–10). The Privacy Rule protects individually iden-
tifiable health information, which is termed protected health information. Under
the Privacy Rule, individuals must sign an authorization to allow the health care
provider to use or disclose protected health information in a research project. The
regulations specify information that must be included in the authorization form. This
HIPAA authorization form is in addition to the informed consent form required by
the IRB. Researchers must obtain authorization for each use of protected information
for research. Furthermore, under the Privacy Rule research participants may have
the right to access health information and to obtain a record of disclosures of their
protected health information.

Informed and Voluntary Consent
Investigators must obtain informed and voluntary consent from research participants.

Disclosure of Information to Participants. Investigators must disclose information
that is relevant to the potential participant’s decision whether or not to participate in
the research. Specifically, investigators must discuss with potential participants:

TABLE 14.2 What Research May Undergo Expedited Institutional Review Board
(IRB) Review?

1. Research that involves no more than minimal risk and is one of the categories of research listed by
the Department of Health and Human Services as eligible for expedited review. Examples include:
• collection of specimens through venipuncture
• collection of specimens through noninvasive procedures routinely employed in clinical practice,

such as electrocardiograms and magnetic resonance imaging. However, procedures using x-rays
must be reviewed by the full IRB.

• research involving data, records, or specimens that have been collected or will be collected for
clinical purposes and research using surveys or interviews that is not exempt from IRB review.

2. Minor changes in previously approved research
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The nature of the research project. The prospective subject should be told explicitly
that research is being conducted, what the purpose of the research is, and how
participants are being recruited. The actual study hypothesis need not be
stated.

The Procedures of the Study. Participants need to know what they will be asked to
do in the research project. On a practical level, they should be told how much
time will be required and how often. Procedures that are not standard clinical
care should be identified as such. Alternative procedures or treatments that
may be available outside the study should be discussed. If the study involves
blinding or randomization, these concepts should be explained in terms the
participant can understand. In interview or questionnaire research, participants
should be informed of the topics to be addressed.

The Risks and Potential Benefits of the Study and the Alternatives to Participating in
the Study. Medical, psychosocial, and economic harms and benefits should be
described in lay terms. Also, potential participants need to be told the alternatives
to participation, for example, whether the intervention in a clinical trial is avail-
able outside the study. Concerns have been voiced that often the information
provided to participants understates the risks and overstates the benefits (11,12).
For example, research on new drugs is sometimes described as offering benefits
to participants. However, most promising new interventions, despite encourag-
ing preliminary results, show no significant advantages over standard therapy.
Often participants have a ‘‘therapeutic misconception’’ that the research inter-
vention is designed to provide them a personal benefit (13). Investigators should
make clear that it is not known whether the study drug is more effective than
standard therapy and that promising drugs can cause serious harms.

Consent Forms. Written consent forms are generally required to document that the
process of informed consent—discussions between an investigator and the sub-
ject—has occurred. The consent form needs to contain all the information that must
be disclosed under the provisions of 45 CFR § 46.116 . Alternatively, a short form may
be used, which states that the required elements of informed consent have been pre-
sented orally. If the short form is used, there must be a witness to the oral presentation,
and the witness must sign the short consent form as well as the participant.

IRBs usually have sample consent language and forms that they prefer investigators
to use. IRBs may require more information to be disclosed than the Common Rule
requires. Investigators should be familiar with the templates and suggestions from
their IRBs.

Participants’ Understanding of Disclosed Information. Ethically, the crucial issue
regarding consent is not what information the researcher discloses but whether
participants understand the risks and benefits of the research project. Research
participants commonly have serious misunderstandings about the goals of research
and the procedures and risks of the specific protocol (1,14). In discussions and
consent forms, researchers should avoid technical jargon and complicated sentences.
IRBs have been criticized for excessive focus on consent forms rather than on
whether potential participants have understood pertinent information (1). Strategies
to increase comprehension by participants include having a study team member
or a neutral educator spend more time talking one-on-one with study participants,
simplifying consent forms, using a question and answer format, providing information
over several visits, and using audiotapes or videotapes (15). In research that involves
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substantial risk or is controversial, investigators should consider assessing whether
participants have appreciated the disclosed information (16).

The Voluntary Nature of Consent. Ethically valid consent must be voluntary as
well as informed. Researchers must minimize the possibility of coercion or undue
influence. Examples of undue influence are excessive payments to participants or
asking staff members or students to volunteer for research. An undue influence is
ethically problematical because participants might discount the risks of a research
project or find it too difficult to decline to participate. Participants must understand
that declining to participate in the study will not compromise their medical care and
that they may withdraw from the project at any time.

Exceptions to consent. Table 14.3 explains how informed consent or written consent
forms may not be needed in several situations. First, activities that do not obtain
identifiable private information on living persons is not considered human subjects
research. Second, the activity may qualify for an exemption from the Common Rule.
These provisions permit exceptions to informed consent for many projects that carry
out secondary analyses of existing data or biological materials. Under HIPAA, the
exceptions to individual authorization for research differ somewhat from exceptions
and waivers of informed consent under the Common Rule. HIPAA allows research to

TABLE 14.3 Is Informed Consent Required Under the Common Rule?

1. Is the activity human subjects research as defined in § 46.012(e) and (f)?
• Is there an intervention or interaction with a living person?
• Does the researcher obtain identifiable private information?
If the answer to both questions is NO, then the Common Rule does not apply

2. Does the activity quality for an exemption from the Common Rule under 45 CFR § 46.101(b)
• Existing data, documents, records, or specimens, provided that the investigator records

data in a way that it cannot be linked to the subject OR that the data or specimens are
publicly available.

• Surveys, interviews, observation of public behavior, provided that subjects cannot be
identified AND responses could not put participants at risk for legal, financial, or social risk.

• Educational practices in educational settings.

3. Does the project qualify for a waiver or modification of informed consent under § 46.116(d)?
• the research involves no more than minimal risk to the subjects; AND
• the waiver or alteration will not adversely affect the rights and welfare of the subjects; AND
• the research could not practicably be carried out without the waiver or alteration; AND
• whenever appropriate, the subjects will be provided with additional pertinent information

after participation.

4. Does the research project qualify for a waiver of signed consent forms under § 46.117(c)?
• The only record linking the subject and the research would be the consent document and

the principal risk is a breach of confidentiality OR
• The research is minimal risk and involves no procedures for which written consent is

normally required outside the research context.
• The research presents no more than minimal risk to participants and
• The waiver or alteration would not adversely affect the rights and welfare of participants and
• The research otherwise could not practicably be carried out
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be carried out without authorization if the data set does not contain certain specified
participant identifiers.

Subjects Who Lack Decision-Making Capacity. When participants are not capable
of giving informed consent, permission to participate in the study should be obtained
from the subject’s legally authorized representative. Also, the protocol should be
subjected to additional scrutiny, to ensure that the research question could not be
studied in a population that is capable of giving consent.

Risks and Benefits
Researchers need to maximize the benefits and minimize the risks of research projects.
Researchers must anticipate risks that might occur in the study; and modify the pro-
tocol to reduce risks to an acceptable level. Measures might include identifying and
excluding persons who are very susceptible to adverse events, appropriate monitoring
for adverse events, and training staff in how to identify and respond to serious ad-
verse events. An important aspect of minimizing risk is maintaining participants’
confidentiality.

Confidentiality
Breaches of confidentiality may cause stigma or discrimination, particularly if the
research addresses sensitive topics such as psychiatric illness, alcoholism, or sexual
behaviors. Strategies for protecting confidentiality include coding research data,
storing it in locked cabinets, protecting or destroying the key that identifies subjects,
and limiting personnel who have access to identifiers. However, investigators should
not make unqualified promises of confidentiality. Confidentiality may be breached
if research records are audited or subpoenaed, or if conditions are identified that
legally must be reported. Researchers have a moral and legal obligation to override
confidentiality to prevent harm in such situations as child abuse, certain infectious
diseases, and serious threats of violence by psychiatric patients. In projects where
information about such situations can be foreseen, the protocol should specify how
field staff should respond, and participants should be informed of these plans.

Investigators can forestall subpoenas in legal disputes by obtaining confidentiality
certificates from the Public Health Service if the research project involves sensitive in-
formation, such as sexual attitudes or practices, use of alcohol or drugs, illegal conduct,
or mental health, or any information that could reasonably lead to stigma or discrim-
ination (17). These certificates allow the investigator to withhold names or identify
characteristics of the participants from people not connected with the project, even
if faced with a subpoena or court order. The research need not be federally funded.
However, these certificates do not apply to audits by funding agencies or the FDA.

RESEARCH PARTICIPANTS WHO REQUIRE ADDITIONAL
PROTECTIONS

Some participants might be ‘‘at greater risk for being used in ethically inappropriate
ways in research’’ (18). Such vulnerable persons might have difficulty giving voluntary
and informed consent or might be more susceptible to adverse events.

Types of Vulnerability
Identifying different types of vulnerability allows researchers to adopt safeguards tai-
lored to the specific type of vulnerability.
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Cognitive or Communicative Impairments. Persons with impaired cognitive func-
tion may have difficulty understanding information about a study and deliberating
about the risks and benefits of the study.

Vulnerability because of Power Differences. Persons who reside in institutions,
such as prisoners or nursing home residents, might feel pressure to participate in
research. In these institutions, those in authority control the daily routine and life
choices of the residents (19). Residents might not appreciate that they may decline to
participate in research, without retaliation by authorities or jeopardy to other aspects
of their everyday lives.

If the investigator in the research project is also a participant’s treating physician,
the participant might find it difficult to decline to participate in research. Participants
might fear that if they decline, the physician will not be as interested in their care or
that they might have difficult getting timely appointments. This might particularly
be a concern for patients at a specialized clinic or hospital, who have few alternative
sources of care.

Social and Economic Disadvantages. Persons with poor access to health care and
low socioeconomic status may join a research study to obtain payment, a physical
examination, or screening tests, although they would regard the risks as unacceptable
if they had a higher income. Poor education or low health literacy may make it both
difficult for participants to comprehend information about the study and also make
them unduly influenced by other people.

Special Federal Regulations for Vulnerable Participants
Research on Children. Investigators must obtain both the permission of the parents
and the assent of the child when developmentally appropriate. In addition, research
with children involving more than minimal risk is circumscribed. Such research is
permissible if it presents the prospect of direct benefit to the child. If the research
offers no such prospect, it may still be approved by the IRB, provided that the increase
over minimal risk is minor and the research is likely to yield generalizable knowledge
of vital importance about the child’s disorder or condition.

Research on Prisoners. Prisoners may not feel free to refuse to participate in re-
search and may be unduly influenced by cash payments, living conditions, or parole
considerations. Federal regulations limit the types of research that are permitted and
require both stricter IRB review and approval by the Department of Health and
Human Services.

Research on Pregnant Women, Fetuses, and Embryos. Extra protections and re-
strictions are required when research is carried out on fetuses and embryos or pregnant
women.

RESPONSIBILITIES OF INVESTIGATORS

Scientific Misconduct
In several highly publicized cases, researchers made up or altered research data or
enrolled ineligible participants in clinical trials (20–23). Such conduct gives incorrect
answers to the research question, undermines public trust in research, and threatens
public support of federally funded research (24).
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The federal government defines research misconduct as fabrication, falsification,
and plagiarism, as the website of the Office for Research Integrity explains. Fabrication
is making up results and recording or reporting them. Falsification is manipulat-
ing research materials, equipment, or procedures or changing or omitting data or
results, so that the research record misrepresents the actual findings. Plagiarism is
appropriating another person’s ideas, results, or words without giving appropriate
credit.

The federal definition of misconduct requires perpetrators to act intentionally in
the sense that they are aware that their conduct is wrong. Research misconduct does
not include honest error or legitimate scientific differences of opinion, which are a
normal part of the research process. The federal definition also excludes other wrong
actions, such as double publication, failure to share research materials, and sexual
harassment (25). Such inappropriate behavior should be dealt with by the principal
investigator and institution.

When research misconduct is alleged, both the federal funding agency and the
investigator’s institution have the responsibility to carry out a fair and timely inquiry
or investigation (26). During an investigation, both whistleblowers and accused
scientists have rights that must be respected. Whistleblowers need to be protected
from retaliation, and accused scientists need to be told the charges and given an
opportunity to respond. Punishment for proven research misconduct may include
suspension of a grant, debarment from future grants, and other administrative,
criminal, or civil procedures.

Authorship
Authorship of scientific papers results in prestige, promotions, and grants for re-
searchers. Therefore investigators are eager to receive credit for publications. Re-
searchers also need to take responsibility for problems with published articles (27).
In several cases of scientific misconduct, coauthors of manuscripts containing fab-
ricated, falsified, or plagiarized data denied knowledge of the misconduct. The rise
in multiple-authored papers has made it more difficult to assign accountability for
published articles.

Problems with authorship include guest authorship and ghost authorship. Guest
or honorary authors are persons who have made only trivial contributions to the paper,
for example, by providing access to participants, reagents, laboratory assistance, or
funding (28). Ghost authors are individuals who made substantial contributions to
the paper but are not listed as authors; generally ghost authors are employees of
pharmaceutical companies or public relations officers. In one study, 21% of articles
had guest authors and 13% ghost authors (29).

Medical journals have set criteria for authorship (30). Authors must make
substantial contributions to (a) the conception and design of the project, or the
data analysis and interpretation, and (b) the drafting or revising of the article; they
must also (c) give final approval of the manuscript. Mere acquisition of funding, data
collection, or supervision of a research group does not justify authorship, instead
warranting an acknowledgment. Because there is no agreement on criteria for first,
middle, or last author, it has been suggested that the contributions of each author to
the project be described in the published article (31).

Disagreements commonly arise among the research team regarding who should
be an author or the order of authors. These issues are best discussed explicitly and
decided at the beginning of a project. Collaborators subsequently might not carry
out the tasks they agreed to, for example, failing to carry out data analyses or prepare
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a first draft. Changes in authorship should be negotiated when decisions are made to
shift responsibilities for the work. Detailed suggestions have been made on how to
carry out such negotiations diplomatically (32).

Conflicts of Interest
Researchers may have conflicting interests that might impair their objectivity and
undermine public trust in research (33,34). Even the perception of a conflict of
interest may be deleterious (35).

Types of Conflicts of Interests.

• Dual roles for clinician-investigators. An investigator may be the personal physi-
cian of an eligible research participant. Such participants might fear that their future
care will be jeopardized if they decline to participate in the research, or they may
not distinguish between research and treatment. Furthermore, what is best for a
particular participant may differ from what is best for the research project. In this
situation, the welfare of the participant should be paramount, and the physician
must do what is best for the participant.

• Financial conflicts of interests. Studies of new drugs are commonly funded by
pharmaceutical companies or biotechnology firms. The ethical concern is that
certain financial ties may lead to bias in the design and conduct of the study, the
overinterpretation of positive results, or failure to publish negative results (33,36,
37). If investigators hold stock or stock options in the company making the drug
or device under study, they may reap large financial rewards if the treatment is
shown to be effective, in addition to their compensation for conducting the study.
Furthermore, investigators may lose well-paying consulting arrangements if the
drug proves ineffective.

Responding to Conflicting Interests. Researchers can respond to some conflicts of
interests by substantially eliminating the potential for bias. Other situations, however,
have such great potential for conflicts of interest that they should be avoided.

• Minimize conflicting interests. In well-designed clinical trials, several standard
precautions help keep competing interests in check. Investigators can be blinded
to the intervention a subject is receiving, to prevent bias in assessing outcomes.
An independent data safety monitoring board (DSMB), whose members have
no conflict of interest, can review interim data and terminate the study if the data
provide convincing evidence of benefit or harm. The peer review process for grants,
abstracts, and manuscripts also helps eliminate biased research.

Physicians should separate the roles of investigator in a research project and
clinician providing the research participant’s medical care, whenever possible. A
member of the research team who is not the treating physician should handle
consent discussions and follow-up visits that are part of the study.

If research is funded by a pharmaceutical company, academic-based investigators
need to ensure that the contract gives them control over the primary data and
statistical analysis, and the freedom to publish findings, whether or not the
investigational drug is found to be effective (36,38). The investigator has an
ethical obligation to take responsibility for all aspects of the research, ensuring
that the work is done rigorously. The sponsor may review the manuscripts, make
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suggestions, and ensure that patent applications have been filed before the article
is submitted to a journal. However, the sponsor must not have power to veto or
censor publication (36).

• Disclose conflicting interests. Conflicts of interest should be disclosed to the IRB
and research participants. In a landmark court case, the California Supreme Court
declared that physicians need to ‘‘disclose personal interests unrelated to the
patient’s health, whether research or economic, that may affect the physician’s pro-
fessional judgment (39).’’ Medical journals commonly require authors to disclose
such conflicts of interest when manuscripts are submitted or published (40,41).
Although disclosure itself is a small step, it may deter investigators from ethically
problematical practices.

• Manage conflicts of interest. If a particular study presents concerns about a conflict
of interest, the research institution may require additional safeguards, such as closer
monitoring of the informed consent process.

• Prohibit certain situations. To minimize conflicts of interest, researchers from
academic institutions should not hold stock or stock options in a company that
has a financial interest in the intervention being studied, nor be an officer in
the company (42–44). Many universities, however, allow investigators to have de
minibus holdings under $10,000.

ETHICAL ISSUES SPECIFIC TO CERTAIN TYPES
OF RESEARCH

Randomized Clinical Trials
Although randomized controlled trials are the most rigorous design for evaluating
interventions (see Chapter 10), they present special ethical concerns because the
intervention is determined by chance. The ethical justification for assigning treatment
by randomization is that the arms of the protocol are in equipoise. That is, current
evidence does not prove that either arm is superior. Even if some experts believe
that one arm offers more effective treatment, other experts believe the opposite (45).
Furthermore, individual participants and their personal physicians must find random-
ization acceptable. If physicians believe strongly that one arm of the trial is superior
and can provide the intervention in that arm outside the study, they cannot in good
faith recommend that their patients enter the trial. Also, the participant might not
consider the arms equivalent, for example, when the trade-offs between benefit and
adverse effects differ markedly in a comparison of medical and surgical approaches to
a disease (46).

Interventions for control groups also raises ethical concerns. According to the
principle of ‘‘do no harm,’’ it is problematic to withhold therapies that are known
to be effective. Hence the control group should receive the current standard of
care. However, placebo controls may still be justified in short-term studies that
do not offer serious risks to participants, such as studies of mild hypertension and
mild, self-limited pain. Participants need to be informed of effective interventions
that are available outside the research study. Dilemmas about the control group are
particularly difficult when the research participants have such poor access to care that
the research project is the only practical way for them to receive adequate health
care.
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It is unethical to continue a clinical trial if there is compelling evidence that one
arm is safer or more effective. Furthermore, it would be wrong to continue a trial
that will not answer the research question because of low enrollment, few outcome
events, or high drop out rates. The periodic analysis of interim data in a clinical
trial by an independent DSMB can determine whether a trial should terminated
prematurely (47). Such interim analyses should not be carried out by the researchers
themselves, because unblinding investigators to interim findings can lead to bias if the
study continues. Procedures for examining interim data and statistical stopping rules
should be specified in the protocol (Chapter 11).

Clinical trials in developing countries present additional ethical dilemmas, as
Chapter 18 discusses.

Research on Previously Collected Specimens and Data
Such research offers the potential for significant discoveries. For example, DNA testing
on a large number of stored biological specimens that are linked to clinical data may
identify genes that increase the likelihood of developing a disease or responding
to a particular treatment. Large biobanks of blood and tissue samples allow future
studies to be carried out without the collection of additional samples. Research
on previously collected specimens and data offers no physical risks to participants.
However, there are ethical concerns. Consent for future studies is problematic because
no one can anticipate what kind of research might be carried out later. Furthermore,
participants may object to the use of data and samples in certain ways (48). Breaches of
confidentiality may occur and may lead to stigma and discrimination. Even if individual
participants are not harmed, groups may be harmed. Historically, genetics research in
the United States led to eugenics abuses, such as forced sterilization of persons with
mental retardation or psychiatric illness (49).

When biological specimens are collected, consent forms should allow participants
to agree to or refuse certain broad categories of future research using the specimens.
For example, participants might agree to allow their specimens to be used in future
research on related conditions or for any kind of future study that is approved by an IRB
and scientific review panel. Participants should also know whether the code identifying
individual participants will be retained or shared with other researchers. Furthermore,
participants should understand that research discoveries from the biobank may be
patented and developed into commercial products. Several national biobanks in
Europe have required commercial users of the biobanks to make payments to the
government, so that the population that contributed the samples will derive some
financial benefit.

OTHER ISSUES

Payment to Research Participants
Participants in clinical research deserve payment for their time and effort and
reimbursement for out-of-pocket expenses such as transportation and childcare.
Practically speaking, compensation may be needed to enroll and retain participants.
The widespread practice is to offer higher payment for studies that are very incon-
venient or risky. However, such incentives also raise ethical concerns about undue
inducement. If participants are paid more to participate in riskier research, poor
persons may undertake risks against their better judgment. To avoid undue influence,
it has been suggested that participants be compensated only for actual expenses and
the time, at an hourly rate for unskilled labor (50).
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SUMMARY

1. Investigators must assure that their projects observe the ethical principles of
respect for persons, beneficence, and justice.

2. Investigators must assure that research meets the requirements of applicable federal
regulations. Informed consent from participants and IRB review are the key
features of these regulations. During the informed consent process, investigators
must explain to potential participants the nature of the project and the risks,
potential benefits, and alternatives.

3. Vulnerable populations, such as children, prisoners, pregnant women, and
people with cognitive deficiency or social disadvantage require additional pro-
tections.

4. Researchers must have ethical integrity. They must not commit scientific miscon-
duct, including fabrication, falsification, or plagiarism. They should deal with
conflicts of interest appropriately and follow criteria for appropriate authorship.

5. In certain types of research, additional ethical issues must be addressed. In ran-
domized clinical trials, the intervention arms must be in equipoise, control groups
must receive appropriate interventions, and the trial must not be continued once
it has been demonstrated that one intervention is safer or more effective. When
research is carried out on previously collected specimens and data, special attention
needs to be given to confidentiality.
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15 Designing Questionnaires

and Interviews

Steven R. Cummings and Stephen B. Hulley

Much of the data in clinical research is gathered using questionnaires or interviews.
For many studies, the validity of the results depends on the quality of these in-
struments. In this chapter we will describe the components of questionnaires and
interviews and outline procedures for developing them.

DESIGNING GOOD INSTRUMENTS

Open-Ended and Closed-Ended Questions
There are two basic types of questions, open-ended and closed-ended, which serve
somewhat different purposes. Open-ended questions are particularly useful when it
is important to hear what respondents have to say in their own words. For example:

What habits do you believe increase a person’s chance of having a stroke?

Open-ended questions leave the respondent free to answer with fewer limits
imposed by the researcher. They allow participants to report more information than
is possible with a discrete list of answers, but the responses may be less complete. A
major disadvantage is that open-ended questions usually require qualitative methods
or special systems (such as coding dictionaries for symptoms and health conditions)
to code and analyze the responses, which takes more time than entering data
from closed-ended responses, and may require subjective judgments. Open-ended
questions are often used in exploratory phases of question design because they
facilitate understanding a concept as respondents express it. Phrases and words used
by respondents can form the basis for more structured items in a later phase.
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Closed-ended questions are more common and form the basis for most stan-
dardized measures. These questions ask respondents to choose from two or more
preselected answers:

Which of the following do you believe increases the chance of having a stroke?

(check all that apply)

Smoking

Being overweight

Stress

Drinking alcohol

Because closed-ended questions provide a list of possible alternatives from which
the respondent may choose, they are quicker and easier to answer and the answers
are easier to tabulate and analyze. In addition, the list of possible answers often helps
clarify the meaning of the question. Finally, closed-ended questions are well suited
for use in multi-item scales designed to produce a single score.

On the other hand closed-ended questions have several disadvantages. They
lead respondents in certain directions and do not allow them to express their own,
potentially more accurate, answers. The set of answers may not be exhaustive (i.e.,
not include all possible options, e.g., the list does not include sexual activity or
dietary salt). One solution is to include an option such as ‘‘Other (please specify)’’ or
‘‘None of the above.’’ When a single response is desired, the respondent should be so
instructed and the set of possible responses should also be mutually exclusive (i.e.,
the categories should not overlap) to ensure clarity and parsimony.

When the question allows more than one answer, instructing the respondent to
mark ‘‘all that apply’’ is not ideal. This does not force the respondent to consider
each possible response, and a missing item may represent either an answer that does
not apply or an overlooked item. It is better to ask respondents to mark each possible
response as either ‘‘yes’’ or ‘‘no’’ as in the example.

Which of the following do you believe increases the chance of having a stroke?

Yes No Don’t know
Smoking

Being overweight

Stress

Drinking alcohol

The visual analog scale (VAS) is another option for recording answers to closed-
ended questions using lines or other drawings. The participant is asked to mark a line
at a spot, along the continuum from one extreme to the other, that best represents
his characteristic. It is important that the words that anchor each end describe the
most extreme values for the item of interest. Here is a VAS for pain severity:
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Please use an X to mark the place on this line that best describes the severity of your
pain in general over the past week.

None Unbearable

For convenience of measurement, the lines are often 10-cm long and the score is
the distance, in centimeters, from the lowest extreme (Example 15.1).

Example 15.1 Illustrated Use of a Visual Analog Scale for Rating the Severity of
Pain

X
None Unbearable

This is a 10-cm line, and the mark is 3.0 cm from the end (30% of the distance
from none to unbearable) so the respondent’s pain would be recorded as having a
severity of 3.0, or 30%.

VASs are attractive because they rate characteristics on a continuous scale; they
may be more sensitive to change than ratings based on categorical lists of adjectives.
An alternative approach is to provide numbers to circle instead of a line. This may
be easier to score, but some participants may find it difficult to understand, so it is
important to explain and give examples of how to answer the question.

Formatting
On questionnaires, it is customary to describe the purpose of the study and how the
data will be used in a brief statement on the cover. Similar information is usually
presented at the beginning of an interview as part of obtaining consent. To ensure
accurate and standardized responses, all instruments must have instructions specifying
how they should be filled out. This is true not only in self-administered questionnaires,
but also for the forms that interviewers use to record responses.

Sometimes it is helpful to provide an example of how to complete a question,
using a simple question that is easily answered (Example 15.2).

Example 15.2 Instructions on How to Fill Out a Questionnaire that Assesses
Dietary Intake

These questions are about your usual eating habits during the past 12 months. Please
mark your usual serving size and write down how often you eat each food in the boxes
next to the type of food.

For example, if you drink a medium (6 oz) glass of apple juice about three times
a week, you would answer:

Apple Juice Small (3 oz) 3 time(s) per Day
x Medium (6 oz) x Week

Large (9 oz) Month
Year
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To improve the flow of the instrument, questions concerning major subject areas
should be grouped together and introduced by headings or short descriptive state-
ments. To warm up the respondent to the process of answering questions, it is helpful
to begin with emotionally neutral questions such as name and contact information.
More sensitive questions can then be placed in the middle, and questions about
personal characteristics such as income or sexual function are often placed at the end
of the instrument. For each question or set of questions, particularly if the format
differs from that of other questions on the instrument, instructions must indicate
clearly how to respond.

If the instructions include different time frames, it is sometimes useful to repeat
the time frame at the top of each new set of questions. For example, questions such as

How often have you visited a doctor during the past year?

During the past year, how many times have you been a patient in an emergency
department?

How many times were you admitted to the hospital during the past year?

can be shortened and tidied as follows:

During the past year, how many times have you

visited a doctor?

been a patient in an emergency department?

been admitted to a hospital?

The visual design of the instruments should make it as easy as possible for
respondents to complete all questions in the correct sequence. If the format is
too complex, respondents or interviewers may skip questions, provide the wrong
information, and even refuse to complete the instruments.

A neat format with plenty of space is more attractive and easier to use than one
that is crowded or cluttered. Although investigators often assume that a questionnaire
will appear shorter by having fewer pages, the task is more difficult when more ques-
tions are crowded onto a page. Response scales should be spaced widely enough so that
it is easy to circle or check the correct number without the mark accidentally including
the answer above or below. When an open-ended question is included, the space for
responding should be big enough to allow respondents with large handwriting to write
comfortably in the space. People with visual problems, including many elderly subjects,
will appreciate large type (e.g., font size 14) and high contrast (black on white).

Possible answers to closed-ended questions should be lined up vertically and pre-
ceded by boxes or brackets to check, or by numbers to circle, rather than open blanks:

How many different medicines do you take everyday? (Check one)

None

1–2
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3–4

5–6

7 or more

(Note that these response options are exhaustive and mutually exclusive.)

Sometimes the investigator may wish to follow up certain answers with more
detailed questions. This is best accomplished by a branching question. Respondents’
answers to the initial question, often referred to as a ‘‘screener,’’ determine whether
they are directed to answer additional questions or skip ahead to later questions. For
example:

Have you ever been told that you have high blood pressure?

Yes −→ How old were you when you were first told you had high blood pressure?

years old

No

↓

Go to question 11

Branching questions save time and allow respondents to avoid irrelevant or
redundant questions. Directing the respondent to the next appropriate question is
done by using arrows to point from response to follow-up questions and including
directions such as ‘‘Go to question 11’’ (see Appendix 15.1).

If questionnaires or data will be entered by scanning the forms, the format of the
questions and the page may be dictated by the requirements of the software used for
scanning. It is important to understand the requirements of the data entry program
and use the appropriate software to develop the forms (Chapter 16).

Wording
Every word in a question can influence the validity and reproducibility of the responses.
The objective should be to construct questions that are simple, are free of ambiguity,
and encourage accurate and honest responses without embarrassing or offending the
respondent.

• Clarity. Questions must be as clear and specific as possible. In general, concrete
words are preferred over abstract words. For example, to measure the amount of
exercise respondents get, asking, ‘‘How much exercise do you usually get?’’ is less clear
than ‘‘During a typical week, how many hours do you spend in vigorous walking?’’

• Simplicity. Questions should use simple, common words that convey the idea and
avoid technical terms and jargon. For most people, for example, it is clearer to
ask about ‘‘drugs you can buy without a doctor’s prescription’’ than to ask about
‘‘over-the-counter medications’’: sentences should also be simple, using the fewest
words and simplest grammatical structure that convey the meaning.



246 Implementation

• Neutrality. Avoid ‘‘loaded’’ words and stereotypes that suggest that there is a
most desirable answer. Asking, ‘‘During the last month, how often did you drink too
much alcohol?’’ will discourage respondents from admitting that they drink a lot of
alcohol. ‘‘During the last month, how often did you drink more than five drinks in
one day?’’ is a more factual, less judgmental, and less ambiguous question.

Sometimes it is useful to set a tone that permits the respondent to admit to
behaviors and attitudes that may be considered undesirable. For example, when
asking about a patient’s compliance with prescribed medications, an interviewer or a
questionnaire may use an introduction: ‘‘People sometimes forget to take medications
their doctor prescribes. Does that ever happen to you?’’ Wording of these introductions
can be tricky. It is important to give respondents permission to admit certain behaviors
without encouraging them to exaggerate.

Collecting information about potentially sensitive areas like sexual behavior or
income is especially difficult. Some people feel more comfortable answering these
types of questions in self-administered questionnaires than in interviews, but a skillful
interviewer can sometimes reveal open and honest answers. In personal interviews,
it may be useful to put potentially embarrassing responses on a card so that the
respondent can answer by simply pointing to a response.

Setting the Time Frame
Many questions are designed to measure the frequency of certain habitual or recurrent
behaviors, like drinking alcohol or taking medications. To measure the frequency of
the behavior it is essential to have the respondent describe it in terms of some unit
of time. If the behavior is usually the same day after day, such as taking one tablet of
a diuretic every morning, the question can be very simple: ‘‘How many tablets do you
take a day?’’

Many behaviors change from day to day, season to season, or year to year. To
measure these, the investigator must first decide what aspect of the behavior is most
important to the study: the average or the extremes. For example, a study of the
effect of chronic alcohol intake on the risk of cardiovascular disease may need a
measurement of average consumption during a period of time. On the other hand,
a study of the role of alcohol in the occurrence of falls may need to know how
frequently the respondent drank enough alcohol to become intoxicated.

Questions about average behavior can be asked in two ways: asking about ‘‘usual’’
or ‘‘typical’’ behavior or counting actual behaviors during a period of time. For
example, an investigator may determine average intake of beer by asking respondents
to estimate their usual intake:

About how many beers do you have during a typical week (one beer is equal to one
12-oz can or bottle, or one large glass)?

beers per week

This format is simple and brief. It assumes, however, that respondents can
accurately average their behavior into a single estimate. Because drinking patterns
often change markedly over even brief intervals, the respondent may have a difficult
time deciding what is a typical week. Faced with questions that ask about usual
or typical behavior, people often report the things they do most commonly and
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ignore the extremes. Asking about drinking on typical days, for example, will under-
estimate alcohol consumption if the respondent drinks unusually large amounts on
weekends.

An alternative approach is to quantify exposure during a certain period of time.

During the last 7 days, how many beers did you have (one beer is equal to one 12-oz
can or bottle, or one large glass)?

beers in the last 7 days

The goal is to ask about the shortest recent segment of time that accurately
represents the characteristic over the whole period of interest for the research question.
The best length of time depends on the characteristic. For example, patterns of sleep
can vary considerably from day to day, but questions about sleep habits during the
past week may adequately represent patterns of sleep during an entire year. On the
other hand, the frequency of unprotected sex may vary greatly from week to week so
questions about unprotected sex should cover longer intervals.

Using diaries may be a more accurate approach to keep track of events, behaviors,
or symptoms that happen episodically (such as falls) or that vary from day to day (such
as pain following surgery or vaginal bleeding). This may be valuable when the timing
or duration of an event is important or the occurrence is easily forgotten. Participants
can enter these data into electronic devices, and the approach allows the investigator
to calculate an average daily score of the object or behavior being assessed. However,
this approach can be time consuming for participants and can lead to more missing
data than the more common retrospective questions. The use of diaries assumes that
the time period assessed was typical, and the self-awareness involved in using diaries
can alter the behavior being recorded.

Avoid Pitfalls
• Double-barreled questions. Each question should contain only one concept. Ques-

tions that use the words or or and sometimes lead to unsatisfactory responses.
Consider this question designed to assess caffeine intake: ‘‘How many cups of coffee
or tea do you drink during a day?’’ Coffee contains much more caffeine than tea
and differs in other ways, so a response that combines the two beverages is not as
precise as it could be. When a question attempts to assess two things at one time, it
is better to break it into two separate questions. ‘‘(1) How many cups of coffee do you
drink during a typical day?’’ and ‘‘(2) How many cups of tea do you drink during a
typical day?’’

• Hidden assumptions. Sometimes questions make assumptions that may not apply
to all people who participate in the study. For example, a standard depression
item asks how often respondents have felt this way in the past week: ‘‘I felt that
I could not shake off the blues even with help from my family.’’ This assumes that
respondents have families and ask for emotional support; for those who do not
have a family or who do not seek help from their family, it is difficult to answer the
question.

• The question and answer options don’t match. It is important that the question
match the options for the answer, a task that seems simple but is often done
incorrectly. For example, the question, ‘‘Have you had pain in the last week?’’ is
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sometimes matched with response options of ‘‘never,’’ ‘‘seldom,’’ ‘‘often,’’ ‘‘very
often,’’ which is grammatically incorrect and can be confusing to respondents.
(The question should be changed to ‘‘How often have you had pain in the last
week?’’ or the answer should be changed to ‘‘yes’’ or ‘‘no.’’) Another common
problem occurs when questions about intensity are given agree/disagree options.
For example, a respondent may be given the statement ‘‘I am sometimes de-
pressed’’ and then asked to respond with ‘‘agree’’ or ‘‘disagree.’’ For those who
are often depressed, it is unclear how to respond; disagreeing with this state-
ment could mean that the person is often depressed or never depressed. In
such a case, it is usually clearer to use a simple question about how often the
person feels depressed matched with options about frequency (never, sometimes,
often).

Scales and Scores to Measure Abstract Variables
It is difficult to quantitatively assess abstract concepts, such as quality of life, from single
questions. Therefore abstract characteristics are commonly measured by generating
scores from a series of questions that are organized into a scale.

Using multiple items to assess a concept may have other advantages over single
questions or several questions asked in different ways that cannot be combined.
Compared with the alternative approaches, multi-item scales can increase the range of
possible responses (e.g., a multi-item quality-of-life scale might generate scores that
range from 1 to 100 whereas a single question rating quality of life might produce four
or five responses from ‘‘poor’’ to ‘‘excellent’’). A disadvantage of multi-item scales
is that they produce results (quality of life = 46.2) that can be difficult to understand
intuitively.

Likert scales are commonly used to quantify attitudes, behaviors, and domains of
health-related quality of life. These scales provide respondents with a list of statements
or questions and asks them to select a response that best represents the rank or degree
of their answer. Each response is assigned a number of points.

For each item, circle the one number that best represents your opinion:

Strongly
Agree Agree Neutral Disagree

Strongly
Disagree

a. Smoking in public places
should be illegal.

1 2 3 4 5

b. Advertisements for cigarettes
should be banned.

1 2 3 4 5

c. Public funds should be spent
for antismoking campaigns.

1 2 3 4 5

An investigator can compute an overall score for a respondent’s answers by simply
summing the score for each item, or averaging the points for all nonmissing items.
For example, a person who answered that he or she strongly agreed that smoking
in public places should be illegal (one point) and advertisements for cigarettes be
banned (one point) but disagreed that public funds should be spent for antismoking
advertising (four points) would have a total score of 6. Simply adding up or averaging
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item scores assumes that all the items have the same weight and that each item is
measuring the same general characteristic.

The internal consistency of a scale can be tested statistically using measures such
as Cronbach’s alpha (1) that assess the overall consistency of a scale. Cronbach’s
alpha is calculated from the correlations between scores on individual items. Values
of this measure above 0.70 are usually acceptable, and 0.80 or more is excellent.
Lower values for internal consistency indicate that some of the individual items may
be measuring different characteristics.

Creating New Questionnaires and Scales
Sometimes an investigator needs to measure a characteristic for which there is no
standard questionnaire or interview approach. When no adequate measure can be
found of a concept that is important to the research, it is necessary to create new
questions or develop a new scale. The task can range from the creation of a single new
question about a minor variable in one study (How frequently do you cut your toenails?)
to developing and testing a new multi-item scale for measuring the primary outcome
(sexual quality of life) for a major study or line of investigation. At the simplest end of
this spectrum, the investigator may use good judgment and basic principles of writing
good questions to develop an item that should then be pretested to make sure it
is clear and produces appropriate answers. At the other extreme, developing a new
instrument to measure an important concept may need a systematic approach that
can take years from initial draft to final product.

The latter process often begins by generating potential items for the instrument
from interviews with individuals and focus groups (small groups of people who are rel-
evant to the research question and who are invited to spend 1 or 2 hours discussing spe-
cific topics pertaining to the study with a group leader). Once the instrument has been
drafted, the next step is to invite critical review by peers, mentors, and experts. The in-
vestigator then proceeds with the iterative sequence of pretesting, revising, shortening,
and validating that is described in the next section. The development of the National
Eye Institute Visual Function Questionnaire illustrates this process (Example 15.3).

Example 15.3 Development of a New Multi-Item Instrument

The National Eye Institute Visual Function Questionnaire exemplifies the painstak-
ing development and testing of a multi-item instrument. Mangione and colleagues
devoted several years to creating and testing the scale because it was intended to serve
as a primary measurement of outcome of many studies of eye disease (2–4). They
began by interviewing patients with eye diseases about the ways that the conditions
affected their lives. Then they organized focus groups of patients with the diseases
and analyzed transcripts of these sessions to choose relevant questions and response
options. They produced and pretested a long questionnaire that was administered
to hundreds of participants in several studies. They used data from these studies to
identify items that made the largest contribution to variation in scores from person
to person and to shorten the questionnaire from 51 to 25 items.

Because the creation and validation of new multi-item instruments is time
consuming, it should generally only be undertaken for variables that are central to
a study, and when existing measures are inadequate or inappropriate for the people
who will be included in the study.
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STEPS IN ASSEMBLING THE INSTRUMENTS
FOR THE STUDY

There are a number of steps in developing a set of instruments for a particular study.

Make a List of Variables
Before designing an interview or questionnaire instrument, the researcher should
write a detailed list of the information to be collected and concepts to be measured in
the study. It can be helpful to list the role of each item (e.g., predictors, outcomes,
and potential confounders) in answering the main research questions.

Collect Existing Measures
Assemble a file of questions or instruments that are available for measuring each
variable. When there are several alternative methods, it is useful to create an electronic
file for each variable to be measured and then to find and file copies of candidate
questions or instruments for each item. It is important to use the best possible
instruments to measure the main predictors and outcomes of a study, so most of the
effort of collecting alternative instruments should focus on these major variables.

There are several sources for instruments. A good place to start is to collect
instruments from other investigators who have conducted studies that included
measurements of interest. Many standard instruments have been compiled and
reviewed in books, review articles, and electronic sources accessed through NIH,
CDC or other Web sites. There are collections of instruments on the Web that
can be found by searching for key terms such as ‘‘health outcomes questionnaires.’’
Instruments can also be found by examining published studies of similar topics and
by calling or writing the authors.

Borrowing instruments from other studies has the advantage of saving develop-
ment time and allowing results to be compared with those of other studies. On the
other hand, existing instruments may not be entirely appropriate for the question or
the population, or they may be too long. It is ideal to use existing instruments without
modification. However, if some of the items are inappropriate (as may occur when
a questionnaire developed for one cultural group is applied to a different setting), it
may be necessary to delete, change, or add a few items.

If a good established instrument is too long, the investigator can contact those
who developed the instrument to see if they have shorter versions. Deleting items from
established scales risks changing the meaning of scores and endangering comparisons
of the findings with results from studies that used the intact scale. Shortening a scale
can also diminish its reproducibility or its sensitivity to detect changes. However, it
is sometimes acceptable to delete sections or ‘‘subscales’’ that are not essential to the
study while leaving other parts intact.

Compose a Draft
The first draft of the instrument should include more questions about the topic than
will eventually be included in the instrument. The first draft should be formatted just
as a final questionnaire would be.

Revise
The investigator should read the first draft carefully, attempting to answer each
question as if he were a respondent and trying to imagine all possible ways to
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misinterpret questions. The goal is to identify words or phrases that might be
confusing or misunderstood by even a few respondents and to find abstract words
or jargon that could be translated into simpler, more concrete terms. Questions that
are complex should be split into two or more questions. Colleagues and experts
in questionnaire design should be asked to review the instrument, considering the
content of the items as well as clarity.

Shorten the Set of Instruments for the Study
Studies usually collect more data than will be analyzed. Long interviews, question-
naires, and examinations may tire respondents and thereby decrease the accuracy and
reproducibility of their responses. When the instrument is sent by mail, people are less
likely to respond to long questionnaires than to short questionnaires. It is important
to resist the temptation to include additional questions or measures ‘‘just in case’’ they
might produce interesting data. Questions that are not essential to answering the main
research question increase the amount of effort involved in obtaining, entering, clean-
ing, and analyzing data. Time devoted to unnecessary or marginally valuable data can
detract from other efforts and decrease the overall quality and productivity of the study.

To decide if a concept is essential, it is useful to think ahead to analyzing and
reporting the results of the study. Sketching out the final tables will help to ensure
that all needed variables are included and to identify those that are less important. If
there is any doubt about whether an item or measure will be used in later analyses, it
is usually best to leave it out.

Pretest
Pretests should be done to clarify, refine, and time the instrument. For key measure-
ments, large pilot studies may be valuable to find out whether each question produces
an adequate range of responses and to test the validity and reproducibility of the
instrument (Chapter 17).

Validate
Questionnaires and interviews can be assessed for validity (an aspect of accuracy) and
for reproducibility (precision) in the same fashion as any other type of measurement
(Chapter 4). The process begins with choosing questions that have face validity, a
subjective but important judgment that the items assess the characteristics of interest,
and continues with efforts to establish content validity andconstruct validity. When-
ever feasible, new instruments can then be compared with established gold standard
approaches to measuring the condition of interest. Ultimately, the predictive validity
of an instrument can be assessed by correlating measurements with future outcomes.

If an instrument is intended to measure change, then its responsiveness can be
tested by applying it to patients before and after receiving treatments considered
effective by other measures. For example, a new instrument designed to measure
quality of life in people with impaired visual acuity might include questions that have
face validity (‘‘Are you able to read a newspaper without glasses or contact lenses?’’).
Answers could be compared with the responses to an existing validated instrument
(Example 15.3) among patients with severe cataracts and among those with normal
eye examinations. The responsiveness of the instrument to change could be tested
by comparing responses of patients with cataracts before and after curative surgery.
The process of validating new instruments is time consuming and expensive, and
worthwhile only if existing instruments are inadequate for the research question or
population to be studied.
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ADMINISTERING THE INSTRUMENTS

Questionnaires versus Interviews
There are two basic approaches to collecting data about attitudes, behaviors, knowl-
edge, health, and personal history. Questionnaires are instruments that respondents
administer to themselves, and interviews are those that are administered verbally by
an interviewer. Each approach has advantages and disadvantages.

Questionnaires are generally a more efficient and uniform way to administer
simple questions, such as those about age or habits of tobacco use. Questionnaires
are less expensive than interviews because they do not require as much time from
research staff, and they are more standardizable. Interviews are usually better for
collecting answers to complicated questions that require explanation or guidance, and
interviewers can make sure that responses are complete. Interviews may be necessary
when participants will have variable ability to read and understand questions. However,
interviews are more costly and time consuming, and they have the disadvantage
that the responses may be influenced by the relationship between interviewer and
respondent.

Both types of instruments can be standardized, but questionnaires have the
advantage because interviews are inevitably administered at least a little differently
each time. Both methods of collecting information are susceptible to errors caused
by imperfect memory; both are also affected by the respondent’s tendency to give
socially acceptable answers, although not necessarily to the same degree.

Interviewing
The skill of the interviewer can have a substantial impact on the quality of the
responses. Standardizing the interview procedure from one interview to the next
is the key to maximizing reproducibility. The interview must be conducted with
uniform wording of questions and uniform nonverbal signals during the interview.
Interviewers must be careful to avoid introducing their own biases into the responses
by changing the words or the tone of their voice. This requires training and practice.

For the interviewer to comfortably read the questions verbatim, the interview
should be written in language that resembles common speech. Questions that sound
unnatural or stilted when they are said aloud will encourage interviewers to improvise
their own, more natural but less standardized way of asking the question.

Sometimes it is necessary to follow up on a respondent’s answers to encourage
him to give an appropriate answer or to clarify the meaning of a response. This
‘‘probing’’ can also be standardized by writing standard phrases in the margins or
beneath the text of each question. To a question about how many cups of coffee
respondents drink on a typical day, some respondents might respond ‘‘I’m not sure;
it’s different from day to day.’’ The instrument could include the follow-up probe:
‘‘Do the best you can; tell me approximately how many you drink on a typical day.’’

Interviews can be conducted in person or over the telephone. Computer-assisted
telephone interviewing (CATI) can reduce some of the costs associated with inter-
views while retaining most of their advantages (4) The interviewer reads questions
to the respondent as they appear on the computer screen, and answers are entered
directly into a database as they are keyed in. This enables immediate checking of
out-of-range values. Interactive voice response (IVR) systems replace the inter-
viewer with computer-generated questions that collect subject responses by telephone
keypad or voice recognition(5).



Chapter 15 ■ Designing Questionnaires and Interviews 253

In-person interviews, however, may be necessary if the study requires direct
observation of participants or physical examinations, or if potential participants do not
have telephones (e.g., the homeless). Some elderly and ill persons are best reached
through in-person interviews where they are living.

Methods of Administering Questionnaires
There are several methods of administering questionnaires. They can be given to
subjects in person or administered through the mail, by e-mail, or through a Web site.
Distributing questionnaires in person allows the researcher to explain the instructions
before the participant starts answering the questions. When the research requires
the participant to visit the research site for examinations, questionnaires can also be
sent in advance of an appointment and answers checked for completeness before the
participant leaves.

E-mailed questionnaires have several advantages over those sent by US Mail,
although they can only be sent to participants who have access to and familiarity with
the Internet. Questionnaires sent by e-mail allow respondents an easy way to provide
data without a clinic visit that can be directly entered into databases. Questionnaires
on Web sites or handheld devices can produce very clean data because answers can be
automatically checked for missing and out-of-range values, the errors pointed out to
the respondent, and the responses accepted only after the errors are corrected.

SUMMARY

1. For many clinical studies, the quality of the results depends on the quality and
appropriateness of the questionnaires and interviews. Investigators should take
the time and care to make sure the instruments are as valid and reproducible as
possible before the study begins.

2. Open-ended questions allow subjects to answer without limitations imposed by
the investigator, and closed-ended questions are easier to answer and analyze. The
response options to a closed-ended question should be exhaustive and mutually
exclusive.

3. Questions should be clear, simple, neutral, and appropriate for the population
that will be studied. Investigators should examine potential questions from the
viewpoint of potential participants, looking for ambiguous terms and common
pitfalls such as double-barreled questions, hidden assumptions, and answer
options that do not match the question.

4. The instrument should be easy to read, and interview questions should be
comfortable to read out loud. The format should fit the method for electronic
data entry and be spacious and uncluttered, with instructions and arrows that
direct the respondent or interviewer.

5. To measure abstract variables such as attitudes or health status, questions can be
combined into multi-item scales to produce a total score. Such scores assume that
the questions measure a single characteristic and that the responses are internally
consistent.
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6. An investigator should search out and use existing instruments that are known to
produce valid and reliable results. When it is necessary to modify existing measures
or devise a new one, the investigator should start by collecting existing measures
to be used as potential models and sources of ideas.

7. The whole set of instruments to be used in a study should be pretested and timed
before the study begins. For new instruments, small initial pretests can improve
the clarity of questions and instructions; later, larger pilot studies can test and
refine the new instrument’s range, reproducibility, and validity.

8. Self-administered questionnaires are more economical than interviews, they are
more readily standardized, and the added privacy can enhance the validity of the
responses. Interviews, on the other hand, can ensure more complete responses and
enhance validity through improved understanding. Administration of instruments
by computer-assisted telephone interviewing, e-mail, and the Internet can
enhance the efficiency of a study.

APPENDIX 15.1

An Example of a Questionnaire about Smoking
The following items are taken from a self-administered questionnaire used in our
Study of Osteoporotic Fractures. Note that the branching questions are followed by
arrows that direct the subject to the next appropriate question and that the format is
uncluttered with the responses consistently lined up on the left of each next area.
1. Have you smoked at least 100 cigarettes in your entire life?

Yes

Yes

No

No

Please go to
question #7

2. About how old were you when you smoked your first cigarette? 

3. On the average over the entire time since you started smoking,
about how many cigarettes did you smoke per day?

4. Have you smoked any cigarettes in the past week?

5. About how many cigarettes per day did you
smoke in the past week?

6. How old were you when you stopped smoking?

years old

cigarettes per day

cigarettes per day

Please skip to next page, question #7

years old
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7. Have you ever lived for at least a year in the same household with someone who
smoked cigarettes regularly?

Yes

No

Yes

No

11 etc.

8. For about how many years, in total, have you lived with
someone who smoked cigarettes regularly at the time? 

9. On the average over the entire time you lived with people who
smoked, about how many cigarettes a day were smoked while
you were at home? 

10. Do you now live in the same household with someone who
smokes cigarettes regularly?

years

cigarettes per day
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16 Data Management

Michael A. Kohn

We have seen that undertaking a clinical research project requires choosing a study
design, defining the population, and specifying the predictor and outcome variables.
Ultimately, all information about the subjects and variables will reside in a computer
database that will be used to store, update, and monitor the data, as well as format
the data for statistical analysis. Simple study databases consisting of individual data
tables can be maintained using spreadsheet or statistical software. More complex
databases containing multiple interrelated data tables require database management
software. Data management for a clinical research study involves defining the data
tables, developing the data entry system, and querying the data for monitoring and
analysis.

DATA TABLES

All computer databases consist of one or more data tables in which the rows
correspond to records or ‘‘entities’’ and the columns correspond to fields or
‘‘attributes.’’ For example, the simplest study databases consist of a single table
in which each row corresponds to an individual study subject and each column
corresponds to a subject-specific attribute such as name, birth date, sex, predictor
or outcome status. Each row must have a column value or combination of column
values that distinguishes it from the other rows. We recommend assigning a unique
identification number (‘‘subject ID’’) to each study participant. Using a unique
subject identifier that has no meaning external to the study database simplifies
the process of ‘‘de-linking’’ study data from personal identifiers for purposes of
maintaining subject confidentiality.

Figure 16.1 shows a simplified data table for a cohort study of the association
between neonatal jaundice and IQ score at age five (1). Each row in the table
corresponds to a study subject, and each column corresponds to an attribute of that
subject. The dichotomous predictor is ‘‘Jaundice,’’ that is, whether the subject had
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FIGURE 16.1. Simplified data table for a cohort study of the association between neonatal jaundice and
IQ score at age 5. The dichotomous predictor is ‘‘Jaundice,’’ that is whether the subject had neonatal
jaundice, and the continuous outcome is ‘‘ExIQScor,’’ which is the subject’s IQ score at age 5.

neonatal jaundice, and the continuous outcome is ‘‘ExIQScor,’’ which is the subject’s
IQ score at age 5.

If the study data are limited to a single table such as the table in Figure 16.1,
they are easily accommodated in a spreadsheet or statistical package.1 We often refer
to a database consisting of a single, two-dimensional table as a ‘‘flat-file’’.2 Many
statistical packages have added features to accommodate more than one table, but at
their core, most remain single-table or flat-file databases.

The need to include more than one table in a study database (and move from
spreadsheet or statistical software to data management software) often arises first
when measurements are repeated on individual subjects. If the same study variable
is measured on multiple occasions, then a separate table should be used to store the
repeated measurements. The rows in this separate table correspond to individual
examinations and include the examination date, the results of the exam, and most
importantly, the subject identification number. In this ‘‘relational database,’’ the
relationship between the table of subjects and the table of examinations is termed
one-to-many.3

To improve precision and enable assessment of the interrater reliability in our
infant jaundice study, the subjects receive the IQ exam multiple times from dif-
ferent examiners. This requires a second table of examinations in which each row
corresponds to a discrete examination, and the columns represent examination date,
examination results, and most importantly, the subject identification number (to link
back to the subject table) (Fig. 16.2). In this two-table database structure, query-
ing the examination table for all exams performed within a particular time period

1In the table shown in Fig. 16.1, the mean (± standard deviation) IQ score for the 5 of 6 neonatal jaundice patients
who had the outcome measured is 112.6 (± 19.1). For the 4 of 7 controls with measurements, the mean is 101.3
(± 24.2). t-test comparison of these means yields a P value of 0.46.
2The original meaning of the term ‘‘flat file’’ was a file consisting of a string of characters that could only be evaluated
sequentially such as a tab-delimited text file.
3Strictly speaking, the term ‘‘relational’’ has little to do with the between-table relationships. In fact, ‘‘relation’’ is
the formal term from mathematical set theory for a data table (2,3). However, the concept of a relational database as
a collection of related tables is a useful heuristic.
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FIGURE 16.2. The two-table infant jaundice study database has a table of study subjects in which each
row corresponds to a single study subject and a table of examinations in which each row corresponds to
a particular examination. Since a subject can have multiple examinations, the relationship between the
two tables is one-to-many. The SubjectID field in the exam table links the exam-specific data to the
subject-specific data.

requires searching a single exam date column. A change to a subject-specific field
like birth date is made in one place, and consistency is preserved. Fields holding
personal identifiers such as name and birth date appear only in the subject table
with the other table(s) containing only the subject ID. The database can still ac-
commodate subjects (such as Alejandro, Ryan, Zachary, and Jackson) who have no
exams.

By structuring the database this way, instead of as a very wide and complex single
table, we have eliminated redundant storage and the opportunity for inconsistencies.
Relational database software will maintain referential integrity, meaning that it will
not allow creation of an exam record for a subject who does not already exist in the
subject table. Similarly, a subject may not be deleted unless and until all that subject’s
examinations have also been deleted.

Data Dictionaries, Data Types, and Domains
So far we have seen tables only in the spreadsheet view. Each column or field
has a name and, implicitly, a data type and a definition. In the ‘‘Subject’’ table
of Figure 16.2, ‘‘FName’’ is a text field that contains the subject’s first name;
‘‘DOB’’ is a date field that contains the subject’s birth date, and ‘‘Jaundice’’ is a
yes/no field that indicates whether the study subject had neonatal jaundice. In the
‘‘Exam’’ table, ‘‘ExWght’’ is a real-number weight in kilograms and ‘‘ExIQScor’’ is
an integer IQ score. The data dictionary makes these column definitions explicit.
Figure 16.3 shows the subject and exam tables in table design (or ‘‘data dictio-
nary’’) view. Note that the data dictionary is itself a table with rows representing
fields and columns for field name, field type, and field description. Since the data
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FIGURE 16.3. The table of study subjects (‘‘Subject’’) and the table of measurements (‘‘Exam’’) in
‘‘data dictionary’’ view. Each variable or field has a name, a data type, a description, and a domain or
set of allowed values.

dictionary is a table of information about the database itself, it is referred to as
‘‘metadata’’.4

Each field also has a domain or range of allowed values. For example, the allowed
values for the ‘‘Sex’’ field are ‘‘M’’ and ‘‘F’’.5 The software will not allow entry of
any other value in this field. Similarly, the ‘‘ExIQScor’’ field allows only integers
between 40 and 200. Creating validation rules to define allowed values affords some
protection against data entry errors. Some of the field types come with automatic
validation rules. For example, the database management software will always reject a
date of April 31.

Variable Names
Most spreadsheet, statistical, and database management programs allow long col-
umn headings or variable names. Philosophies and naming conventions abound.
We recommend variable names that are short enough to type quickly, but long
enough to be descriptive. Although they are often allowed by the software, we
recommend avoiding spaces and special characters in variable names. It is gener-
ally better to use a variable name that describes the field rather than its location

4Although Figure 16.3 displays two data dictionaries, one for the ‘‘Subject’’ table and one for the ‘‘Exam’’ table, the
entire database can be viewed as having a single data dictionary rather than one dictionary for each table. For each
field in the database, the single data dictionary requires specification of the field’s table name in addition to the field
name, field type, field description, and range of allowed values.
5Another possibly preferable way to handle gender is to replace the ‘‘Sex’’ field with a ‘‘Male’’ field, and use 1 for yes
(male sex) and 0 for no (female sex). This way the mean value for the field is the proportion of subjects who are male.
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on the data collection form (e.g., ‘‘EverSmokedCigarettes’’ or ‘‘eversmo,’’ instead of
‘‘question1.’’)

DATA ENTRY

Whether the study database consists of one or many tables and whether it uses
spreadsheet, statistical, or database management software, a mechanism for populating
the data tables is required.

Keyboard transcription. Historically, the common method for populating a study
database has been to collect data on paper forms6 and then transcribe the data
by keyboard into the computer tables. The investigator or other members of
the research team may fill out the paper form, or in some cases, the subject
himself fills it out. Transcription can occur from the paper forms directly into
the data tables (e.g, the response to question 3 on subject 10 goes into the
cell at row 10, column 3) or through on-screen forms designed to make data
entry easier and include automatic data validation checks. Transcription should
occur as shortly as possible after the data collection, so that the subject and
interviewer or data collector is still available if responses are found to be missing
or out of range. Also, as discussed below, monitoring for data problems (e.g.,
outlier values) and preliminary analyses can only occur once the data are in the
computer database.

If transcribing from paper forms, the investigator should consider double
data entry to ensure the fidelity of the transcription. The database program
compares the two values entered for each variable and presents a list of values
that do not match. Discrepant entries are then checked on the original forms
and corrected. Double data entry identifies data entry errors at the cost of
doubling the time required for data entry. An alternative is to recheck or
reenter a random proportion of the data. If the error rate is acceptably low,
additional data editing is unlikely to be worth the effort and cost.

Machine-readable forms. Another alternative is to scan the data into the tables
using optical mark recognition (OMR) and optical character recognition
(OCR) software. Machine-readable forms can be created using this special
software. When scanned or faxed, the handwritten information on these forms
is read into the database. The obvious advantage is that keyboard data entry is
not required. However, these systems are more difficult and costly to design
and support. Because text is difficult to read accurately, machine-readable forms
must be completed carefully, typically requiring that ‘‘bubbles’’ be filled in for
categorical variables and that text be written clearly inside specific spaces. For
this reason, machine-readable forms are often completed by trained study staff,
rather than by study participants.

Most OMR/OCR programs provide a verification step. After the data
forms are scanned or faxed, an image of the completed form and the data as
they will appear in the database are presented on a computer screen. The person
who is verifying the data must approve each coded value before it becomes
part of the database. Systems for collecting data from machine-readable forms

6In clinical trials, the paper data collection form corresponding to a specific subject is commonly called a Case Report
Form (CRF).
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generally handle some types of data so well (bubbles, check boxes) that
verification is not required, but accuracy should be tested before the study
begins and retested during data collection. Machine-readable systems may be
less accurate for other types of data, such as text, and it may be necessary to
devote substantial time toward verification.

As with keyboard transcription, scanning of machine-readable forms should
occur as shortly as possible after data collection.

Distributed data entry. If data collection occurs at multiple locations, the pa-
per forms can be mailed or faxed to a central location for transcription
or scanning into the computer database. Alternatively, the computer data
entry can occur at each of the locations. In such distributed data entry, net-
worked computers and the Internet allow direct entry into the central study
database, often maintained on a server at the principle investigator’s institu-
tion. Alternatively, data are stored on a local computer at the data collection
site and batch transmitted by diskette, CD, tape, e-mail, or File Transfer
Protocol (FTP). Government regulations require that electronic health infor-
mation be either de-identified or transmitted securely (e.g., encrypted and
password-protected).

Electronic data capture. Increasingly, research studies collect data using on-
screen forms7 or web pages, instead of paper data collection forms. This has
many advantages:
• The data are keyed directly into the data tables without a second transcription

step, which can be a source of error.
• The computer form can include validation checks and provide immediate

feedback when an entered value is out of range.
• The computer form can also incorporate skip logic so that, for example, a

question about packs per day appears only if the subject answered ‘‘yes’’ to
a question about cigarette smoking.

• The form can still be filled out by a member of the study team or by the
subject himself. When filling out a computer questionnaire, subjects may be
more forthcoming about sensitive topics such as sexual behaviors and illicit
drug use than during an in-person interview.

• The form may be viewed and data entered on portable, wireless devices such
as handheld tablet computers and personal data assistants.

When using on-screen forms for electronic data capture, it sometimes makes
sense to print out a paper record of the data immediately after collection. This
is analogous to printing out a receipt after a transaction at the automated teller
machine. The printout is a paper ‘‘snapshot’’ of the record immediately after
data collection and may be used as the original or source document if a paper
version is required.

Coded Responses versus Free Text
As mentioned above, defining a variable or field in a data table includes specifying
its range of allowed values. For subsequent analysis, it is always preferable to limit
responses to a range of coded values rather than allowing free-text responses. This
is the same as the distinction made in Chapter 15 between ‘‘closed-ended’’ and
‘‘open-ended’’ questions. If the range of possible responses is unclear, initial data

7Since in clinical trials paper forms are called CRFs, electronic on-screen forms are called eCRFs.
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collection during the pretesting of the study can allow free-text responses that will
subsequently be used to develop coded response options.

A set of response options to a question should be exhaustive (all possible options
are provided) and mutually exclusive (no two options can both be correct); response
options can always be made collectively exhaustive by adding an ‘‘other’’ response.
On-screen data collection forms and web pages provide three possible formats for
displaying the mutually exclusive and collectively exhaustive response options: drop-
down list, pick list (field list), or option group (Fig. 16.4.). These formats will be
familiar to any research subject or data entry person who has worked with a computer
form or web page. The drop-down list saves screen space but will not work if the
screen form will be printed to paper for data collection. Both the pick list (which
is just a drop-down list that is permanently dropped down) and the option group
require more screen space, but provide a complete record when printed.

Questions with a set of mutually exclusive responses correspond to a single field
in the data table. ‘‘All that apply’’ questions are not mutually exclusive, corresponding
to as many yes/no fields as there are possible responses. By convention, response
options for ‘‘all that apply’’ questions use square check boxes rather than the round
radio buttons used for option groups with mutually exclusive responses (Fig. 16.5.).
It is good practice to be consistent when coding yes/no (dichotomous) variables. In
particular, 0 should always represent no or absent, and 1 should always represent yes
or present. With this coding, the average value of the variable is interpretable as the
proportion with the attribute.

Importing Measurements and Laboratory Results
Much study information, such as the baseline demographic information in the hospital
registration system, the laboratory results in the laboratory’s computer system, and
the measurements made by dual energy x-ray absorptiometry scanners and Holter
monitors, is already in digital electronic format. Where possible, these data should
be incorporated directly in the study database to avoid the labor and potential
transcription errors involved in reentering the data. For example, in the study of
infant jaundice, the subject demographic data and contact information are obtained
from the hospital database. Computer systems can often communicate with each
other directly using a variety of protocols (web services, ODBC, XML, etc), and if
this is not possible, they can produce text-delimited or fixed-column-width character
files that the database software can import.

Back-end versus Front-end Software
Now that we have discussed data tables and data entry, we can make the distinction
between the study database’s back end and front end. The back end consists of the
data tables themselves. The front end or ‘‘interface’’ consists of the on-screen forms
or web pages used for entering, viewing, and editing the data. Table 16.1 lists some
software programs used in data management for clinical research.

Simple study databases consisting of a single data table can use spreadsheet
or statistical software for the back-end data table and the study personnel can
enter data directly into the data table’s cells, obviating the need for front-end data
collection forms. More complex study databases consisting of multiple data tables
require relational database software to maintain the back-end data tables. If the
data are collected first on paper forms, entering the data will require scanning using
OMR/OCR software or transcription through front-end forms or web pages. As
discussed under ‘‘Electronic Data Capture’’ above, data may also be entered directly
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Drop-Down List
A

B
Pick List (Field List)

C
Option Group

FIGURE 16.4. Formats for entering from a mutually exclusive, collectively exhaustive list of
responses. The drop-down list (A) saves screen space but will not work if the screen form will
be printed to paper for data collection. Both the pick list (which is just a drop-down list that
is permanently dropped down) (B) and the option group (C) require more screen space, but
will work if printed.
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TABLE 16.1 Some Software Programs Used in
Research Data Management

Spreadsheet

Excel

Open Office Calc∗

Statistical Analysis

Statistical Analysis System (SAS)

Statistical Package for the Social Sciences (SPSS)

Stata

R∗

Form Scanning (Optical Mark Recognition) Software

TeleForm

Integrated Desktop Database Systems (Back End and Front End)

Access

Filemaker Pro

Open Office Base∗

Enterprise Relational Database Systems (Back End)

Oracle

DB2

SQL Server

MySQL∗

Interface Builders (Front End)

Adobe Acrobat

Front Page

Dream Weaver

Visual Studio

JBuilder (Java)

Eclipse (Java)

Integrated Web-Based Applications for Research Data Management

Oracle Clinical

Phase Forward Clintrial/InForm

QuesGen

Velos eResearch

StudyTRAX

Labmatrix

∗ Open source software.
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FIGURE 16.5. By convention, response options for ‘‘all that apply’’ questions use square check
boxes. ‘‘All that apply’’ questions correspond to as many fields as there are possible responses.

into the front-end forms or web pages (with the option of printing out a paper
‘‘snapshot’’ of the record immediately after it is collected).

Some of the statistical packages, such as SAS, have developed data entry
modules. Integrated desktop database programs, such as Access and Filemaker
Pro, also provide extensive tools for the development of data forms. The so-called
‘‘enterprise’’ database programs, such as Oracle, SQL Server, and MySQL, are
generally used for the back end, with the front end developed using separate
software. Frequently, these enterprise databases are used in conjunction with a web
browser–based front end.

Integrated applications, dedicated to research data management, with web-based
front ends and enterprise back ends are beginning to appear (Table 16.1). At the time
of publication, none of these was established in the research community, but this is a
domain in which rapid progress is likely to take place.

EXTRACTING DATA (QUERIES)

Once the database has been created and data entered, the investigator will want to
organize, sort, filter, and view (‘‘query’’) the data. Queries are used for monitor-
ing data entry, reporting study progress, and ultimately analyzing the results. The
standard language for manipulating data in a relational database is called Structured
Query Language (SQL) (pronounced ‘‘sequel’’).8 All relational database software
systems use one or another variant of SQL, but most provide a graphical interface
for building queries that makes it unnecessary for the clinical researcher to learn
SQL.

A query can join data from two or more tables, display only selected fields, and
filter for records that meet certain criteria. Queries can also calculate values based
on raw data fields from the tables. Figure 16.6 shows the results of a query on our
infant jaundice database that filters for boys examined in January or February and

8SQL has 3 sublanguages: DDL—Data Definition Language, DML—Data Manipulation Language, and DCL—Data
Control Language. Strictly speaking, DML is the SQL sublanguage used to view, organize, and extract data, as well
as insert, update, and delete records.



Chapter 16 ■ Data Management 267

FIGURE 16.6. The results of a query on the infant jaundice database filtering for boys examined in
January or February and calculating age in months (from birth date and date of exam) as well as
body mass index (BMI—from weight and height).

calculates age in months (from birth date and date of exam) as well as body mass
index (BMI—from weight and height). Note that the result of a query that joins two
tables, displays only certain fields, selects rows based on special criteria, and calculates
certain values, still looks like a table in spreadsheet view. One of the tenets of the
relational database model is that operations on tables produce table-like results. The
data in Figure 16.6 are easily exported to a statistical analysis package. (Note that no
personal identifiers are included in the query.)

IDENTIFYING AND CORRECTING ERRORS IN THE DATA

The first step toward avoiding errors in the data is testing the data collection and
management system as part of the overall pretesting for the study. The entire system
(data tables, data entry forms, and queries) should be tested using dummy data.

We have discussed ways to enhance the fidelity of keyboard transcription, scanning
of machine-readable forms, or electronic data capture once data collection begins.
Values that are outside the permissible range should not get past the data entry
process. However, the database should also be queried for missing values and outliers
(extreme values that are nevertheless within the range of allowed values). For example,
a weight of 30 kg might be within the range of allowed values for a 5-year old, but
if it is 5 kg greater than any other weight in the dataset, it bears investigation. Many
data entry systems are incapable of doing cross-field validation, which means that the
data tables may contain field values that are within the allowed ranges but inconsistent
with one another. For example, it would not make sense for a 30-kg 5-year-old to
have a height of 100 cm. While the weight and height values are within range, the
weight (extremely high for a 5-year old) is inconsistent with the height (extremely
low for a 5-year old). A 5-year old simply cannot have a BMI of 30 kg/m2. Such an
inconsistency is easily identified using a query like the one depicted in Figure 16.6.

Missing values, outliers, inconsistencies, and other data problems are identified
using queries and communicated to the study staff, who can respond to them by
checking original source documents, interviewing the participant, or repeating the
measurement. If the study relies on paper source documents, any resulting changes
to the data should be highlighted (e.g., in red ink), dated, and signed. As discussed
below, electronic databases should maintain an audit log of all data changes.

If data are collected by several investigators from different clinics or locations,
means and medians should be compared across investigators and sites. Substantial
differences by investigator or site can indicate systematic differences in measurement
or data collection.

Data editing and cleaning should give higher priority to more important variables.
For example, in a randomized trial, the most important variable is the outcome, and
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no errors should be tolerated. In contrast, errors in other variables, such as the
date of a visit, may not substantially affect the results of analyses. Data editing is an
iterative process. After errors are identified and corrected, editing procedures should
be repeated until very few important errors are identified. At this point, the edited
database is declared final or ‘‘frozen,’’ so that no further changes are permitted even
if errors are discovered.

ANALYSIS OF THE DATA

Analyzing the data often requires creating new, derived variables based on the raw
field values in the ‘‘frozen’’ dataset. For example, continuous variables may be
dichotomized (blood pressure above a cut point defined as hypertension), new categories
created (specific drugs grouped as antibiotics), and calculations made (years of smoking x
number of packs of cigarettes per day = pack years). It is desirable to decide how missing
data will be handled. ‘‘Don’t know’’ is often recoded as a special category, combined
with ‘‘no,’’ or excluded as missing. If the study uses database software, queries can
be used to derive the new variables prior to export to a statistical analysis package.
Alternatively, derivation of the new fields can occur in the statistical package itself.

When multiple manuscripts are written based on the same database, it is desirable
to use the same definitions of variables and handle missing data in the same way
for each analysis. For example, it may be disconcerting for readers if the number of
diabetic participants in the study varies. This could easily happen if diabetes is defined
as self-reported diabetes in one analysis and reported use of hypoglycemic medications
in another.

CONFIDENTIALITY AND SECURITY

As mentioned above, to protect research subject confidentiality, the database should
assign a unique subject identifier (subject ID) that has no meaning external to the
study database. In other words, the subject ID should not incorporate the subject’s
name, initials, birth date, or medical record number. Any database fields that contain
personal identifiers should be deleted when the study is complete9 and prior to sharing
the data. If the database uses multiple tables, the personal identifiers can be kept in a
separate table. Study databases that contain personal identifiers must be maintained
on secure servers accessible only to authorized members of the research team, each of
whom will have a user ID and password.

To be fully compliant with the Privacy Rule of the Health Insurance Portability
and Accountability Act (HIPAA) (4), the database system should audit all viewing,
entering, and changing of the data. Field level auditing allows determination of when
a data element was changed, who made the change, and what change was made.
This is necessary under the Code of Federal Regulations, Title 21, Part 11, (21
CFR 11) (5) if the electronic data will be used in an FDA New Drug Application
without paper source documents.

The study database must be backed up regularly and stored off-site. Periodi-
cally, the back-up procedure should be tested by restoring a backed-up copy of the
data. At the end of the study the original data, data dictionary, final database, and

9The table linking the subject ID to personal identifiers such as name, address, phone, and medical record number
may be removed from the database but archived in a secure location should it ever be necessary to reidentify a subject.
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the study analyses should be archived for future use. Such archives can be revisited in
future years, allowing the investigator to respond to questions about the integrity of
the data or analyses, perform further analyses to address new research questions and
share data with other investigators.

SUMMARY

1. The study database consists of one or more data tables in which the rows corre-
spond to records or ‘‘entities’’ (often participants) and the columns correspond
to fields or ‘‘attributes’’ (often measurements).

2. The data dictionary specifies the name, data type, description, and range of
allowed values for all the fields in the database.

3. The data entry system is the means by which the data tables are populated.
Transcription from paper forms may require double data entry to ensure fidelity.

4. Electronic data capture through on-screen forms or web pages eliminates the
transcription step. If required, a source document can be printed immediately
after direct data entry.

5. A spreadsheet or statistical program is adequate for simple databases, but com-
plex databases require the creation of a relational database using database
management software.

6. Database queries sort and filter the data as well as calculate values based on the raw
data fields. Queries are used to monitor data entry, report on study progress,
and format the results for analysis.

7. To protect subject confidentiality, databases that contain personal identifiers
must be stored on secure servers, with access restricted and audited.

8. Loss of the database must be prevented by regular backups and off-site storage,
and by archiving copies of key versions of the database for future use.
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17 Implementing the Study

and Quality Control

Deborah Grady and Stephen B. Hulley

Most of this book has dealt with the left-hand side of the clinical research model,
addressing matters of design (Fig. 17.1). In this chapter we turn to the right hand,
implementation side. Even the best of plans thoughtfully assembled in the armchair
may work out differently in practice. Skilled research staff may be unavailable, study
space less than optimal, participants less willing to enroll than anticipated, the
intervention poorly tolerated, and the measurements challenging. The conclusions of
a well-designed study can be marred by ignorance, carelessness, lack of training and
standardization, and other errors in finalizing and implementing the protocol.

Successful study implementation begins with assembling resources including
space, staff, and financial management for study start-up. The next task is to finalize
the protocol through a process of pretesting and pilot studies of recruitment,
measurement and intervention plans, in an effort to avoid the need for protocol

Research
question

Study plan Actual
study

Design Implement

Infer Infer
TRUTH IN THE

UNIVERSE
TRUTH IN THE

STUDY
FINDINGS IN
THE STUDY

ErrorError

EXTERNAL
VALIDITY

INTERNAL
VALIDITY

Target
population

Intended
sample

Actual
subjects

Phenomena
of interest

Intended
variables

Actual
measurements

FIGURE 17.1. Implementing a research project.
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revisions after data collection has begun. The study is then carried out with a
systematic approach to quality control of clinical and lab procedures and of data
management following the principles of Good Clinical Practice (GCP).

ASSEMBLING RESOURCES

Space
Conducting clinical research in which volunteer participants make study visits requires
accessible, attractive, and sufficient space. Failing to successfully negotiate for space
early in the study planning process can result in difficulty enrolling participants, poor
adherence to study visits, incomplete data, and unhappy staff. Clinical research space
must be easily accessible to participants and have adequate available parking. The
space should be welcoming, comfortable, and spacious enough to accommodate
staff, measurement equipment, and storage of study drug and study-related files.
If there will be a physical examination, provision for privacy and hand-washing
must be available. If the participants must go to other places for tests (such as the
hospital laboratory or radiology department) these should be easily accessible. In
some studies, such as those that enroll sick patients or deliver interventions that could
be dangerous, access to cardiopulmonary resuscitation teams and equipment may be
required.

Many university medical centers have clinical research centers that provide fully
equipped research space that is staffed by experienced research staff. Clinical re-
search centers often include the ability to make specialized measurements (such as
caloric intake, bone density, and insulin clamp studies), and may provide access to
other services (such as professional recruitment, database management, and statistical
analysis). These centers provide an excellent option for carrying out clinical and
translational research, but may require separate application and review procedures and
reimbursement for services.

The Research Team
Research teams range in size from small—often just the investigator and a part-time
research assistant—to multiple full-time staff for large studies. Regardless of size,
all research teams must accomplish similar activities and fill similar roles, which are
described in Table 17.1. Often, one person carries out several or many of these
activities. However, some of these duties require special expertise, such as statistical
programming and analyses. Some team members, such as the financial and human
resources managers, are generally employed by the university or medical center, and
provided by the investigator’s department or unit. Regardless of the size of the
study team, the principal investigator (PI) must make sure that each of the functions
described in Table 17.1 is carried out.

After deciding on the number of team members and the distribution of duties,
the next step is to work with a departmental administrator to find qualified and
experienced job applicants. This can be difficult, because formal training for some
research team members is variable, and job requirements vary from one study to
the next. For example, the crucial position of project director may be filled by a
person with a background in nursing, pharmacy, public health, laboratory services, or
pharmaceutical research, and the duties of this position can vary widely.
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TABLE 17.1 Functional Roles for Members of a Research Team∗

Role Function Comment

Principal investigator Ultimately responsible for the
design, conduct and quality of the
study, and for reporting findings

Project director/
clinic coordinator

Provides day-to-day management
of all study activities

Experienced, responsible,
meticulous, and with good
interpersonal and organizational
skills

Recruiter Ensures that the desired number of
eligible participants are enrolled

Knowledgeable and experienced
with a range of recruitment
techniques

Research
assistant/clinic staff

Carries out study visit procedures
and makes measurements

Physical examination or other
specialized procedures may
require special licenses or
certification

Quality control
coordinator

Ensures that all staff follow
standard operating procedures
(SOPs), and oversees quality
control

Observes study procedures to
ensure adherence to SOPs, may
supervise audit by external
groups such as U.S. Food and
Drug Administration (FDA)

Data manager Designs, tests, and implements the
data entry, editing and storage
system

Programmer/analyst Produces study reports that
describe recruitment, adherence
and data quality, conducts data
analyses

Works under the supervision of
the principle investigator (PI) and
statistician

Statistician Estimates sample size and power,
designs analysis plan, interprets
findings

Often plays a major role in overall
study design and conduct

Administrative
assistant

Provides clerical and administrative
support, sets up meetings, etc.

Generally not eligible for federal
direct cost support

Financial manager Prepares budget and manages
expenditures

Provides projections to help
manage budget

Human resources
manager

Assists in preparing job
descriptions, hiring, evaluations

Helps manage personnel issues
and problems

∗ In small studies, one person may take on several of these roles.
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Most universities and medical centers have formal methods for posting job
openings, but other avenues, such as newspaper and web-based advertisements, can
be useful. The safest approach is to find staff of known competence, for example,
someone working for a colleague whose project has ended.

Leadership and Team-Building
The quality of a study that involves more than one person on the research team
begins with the integrity and leadership of the PI. The PI should ensure that all staff
are properly trained and certified to carry out their duties. He should clearly convey
the message that protection of human subjects, maintenance of privacy, completeness
and accuracy of data, and fair presentation of research findings are paramount. He
cannot watch every measurement made by colleagues and staff, but if he creates a
sense that he is aware of all study activities and feels strongly about human subjects’
protection and the quality of the data, most people will respond in kind. It is helpful
to meet with each member of the team from time to time, expressing appreciation
and discussing problems and solutions. A good leader is adept at delegating authority
appropriately and at the same time setting up a hierarchical system of supervision that
ensures sufficient oversight of all aspects of the study.

From the outset of the planning phase, the investigator should lead regular staff
meetings with all members of the research team. Meetings should have the agenda
distributed in advance, with progress reports from individuals who have been given
responsibility for specific areas of the study. These meetings provide an opportunity
to discover and solve problems, and to involve everyone in the process of developing
the project and conducting the research. Staff meetings are enhanced by scientific
discussions and updates related to the project. Regular staff meetings are a great
source of morale and interest in the goals of the study and provide ‘‘on-the-job’’
education and training.

Most research-oriented universities and medical centers provide a wide range
of institutional resources for conducting clinical research. These include human
resources and financial management infrastructure, and centralized clinical research
centers that provide space and experienced research staff. Many universities also
have core laboratories where specialized measurements can be performed, centralized
space and equipment for storage of biologic specimens or images, centralized database
management services, professional recruitment centers, expertise regarding U.S. Food
Drug Administration (FDA) and other regulatory issues, and libraries of study forms
and documents. This infrastructure may not be readily apparent in a large sprawling
institution, and investigators should seek to become familiar with their local resources
before trying to do it themselves.

Study Start-up
At the beginning of the study, the PI must finalize the budget, develop and sign
any contracts that are involved, define staff positions, hire and train staff, obtain
institutional review board (IRB) approval, write the operations manual, develop and
test forms, develop and test the database, and begin recruiting participants. This
period of study activity is referred to as study start-up, and requires intensive effort
before the first participant can be enrolled. Adequate time and planning for study
start-up are important to the conduct of a high-quality study.

Adequate funding for conducting the study is crucial. The budget will have been
prepared at the time the proposal is submitted for funding, well in advance of starting
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the study (Chapter 19). Most universities and medical centers employ staff with
financial expertise to assist in the development of budgets (the preaward manager).
It is a good idea to get to know this person well, and to thoroughly understand
regulations related to various sources of funding.

In general, the rules for expending NIH and other public funding are considerably
more restrictive than for industry or foundation funding. The total amount of the
budget cannot be increased if the work turns out to be more costly than predicted,
and shifting money across categories of expense (e.g., personnel, equipment, supplies,
travel) usually requires approval by the sponsor. Universities and medical centers
typically employ financial personnel whose main responsibility is to ensure that funds
available to an investigator through grants and contracts are spent appropriately (the
postaward manager). The postaward manager should prepare regular reports and
projections that allow the investigator to make adjustments in the budget to make
the best use of the available finances during the life of the study.

The budget for a study supported by a pharmaceutical company is part of a
contract that incorporates the protocol and a clear delineation of the tasks to be
carried out by the investigator and the sponsor. Contracts are legal documents that
obligate the investigator to activities and describe the timing and amount of payment in
return for specified ‘‘deliverables.’’ University or medical center lawyers are needed to
help develop such contracts and ensure that they protect the investigator’s intellectual
property rights, access to data, publication rights, and so forth. However, lawyers may
not be familiar with the tasks required to complete a specific study, and input from
the investigator is crucial, especially with regard to the scope of work.

Institutional Review Board Approval
The IRB must approve the study protocol, consent form and recruitment materials
before recruitment can begin (Chapter 14). Investigators should be familiar with the
requirements of their local IRB and the time required to obtain approval. IRB staff
are generally very helpful in these matters, and should be contacted early on to discuss
any procedural issues and design decisions that affect study participants.

Operations Manual and Forms Development
The study protocol is commonly expanded to create the operations manual, which
includes the protocol, information on study organization and policies, and a detailed
version of the methods section of the study protocol (Appendix 17.1). It specifies
exactly how to recruit and enroll study participants, and describes all activities that
occur at each visit—how randomization and blinding will be achieved, how each
variable will be measured, quality control procedures, data management practices,
and the statistical analysis plan. It should also include all of the questionnaires and
forms that will be used in the study, with instructions on contacting the study
participants; carrying out interviews, completing and coding study forms, entering
and editing data, and collecting and processing specimens. An operations manual
is essential for research carried out by several individuals, particularly when there is
collaboration among investigators in more than one location. Even when a single
investigator does all the work himself, operational definitions help reduce random
variation and changes in measurement technique over time.

Design of the data collection forms will have an important influence on the
quality of the data and the success of the study (Chapter 15). Before the first
participant is recruited, the forms should be pretested. Any entry on a form that
involves judgment requires explicit operational definitions that should be summarized
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briefly on the form itself and set out in more detail in the operations manual. The
items should be coherent and their sequence clearly formatted, with arrows indicating
when questions should be skipped (see Appendix 15.1). Pretesting will ensure clarity
of meaning and ease of use. Labeling each page with the date, name, and ID
number of the subject and staff safeguards the integrity of the data should pages
become separated. Some studies use digital forms, handheld computers, personal
digital assistants or other devices to collect data, bypassing the need to create paper
forms. These devices must also be pretested during study start-up, and directions for
their use included in the operations manual.

Database Design
Before the first participant is recruited, the database that will be used to enter, store,
update, and monitor the data must be created and tested. Database design and man-
agement are discussed in Chapter 16. Depending on the type of database that will be
used and the scope of the study, development and testing of the data entry and man-
agement system can require weeks to months after staff with the appropriate skills have
been identified, hired, and trained. For very large studies, professional database design
and management services are available, generally from organizations that provide
professional research management (Clinical Research Organizations, or CROs).

Recruitment
Approaches to successfully recruiting the goal number of study participants are
described in Chapter 3. We want to emphasize here that timely recruitment is the
most difficult aspect of many studies. Adequate time, staff, resources, and expertise
are essential, and should be planned well in advance of study start-up.

FINALIZING THE PROTOCOL

Pretests and Pilot Studies
Pretests and pilot studies are designed to evaluate the feasibility, efficiency and cost
of study methods, the reproducibility and accuracy of measurements, and likely
recruitment rates, outcome rates and effect sizes. The nature and scale of pretests and
pilot studies depends on the study design and the needs of the study. For most studies,
a series of pretests or a small pilot study serves very well, but for large, expensive
studies a full-scale pilot study may be appropriate (1). It may be desirable to spend
up to 10% of the eventual cost of the study to make sure that recruitment strategies
will work, measurements are appropriate and sample size estimates are realistic.

Pretests are evaluations of specific questionnaires, measures, or procedures that can
be carried out by study staff to assess their functionality, appropriateness and feasibility.
For example, pretesting the data entry and database management system is generally
done by having study staff complete forms with missing, out of range or illogical
data, entering these data and testing to ensure that the data editing system identifies
these errors.

Pilot studies enroll a small number of participants and require a protocol, ap-
proval by the IRB and informed consent. Important reasons for conducting a pilot
study are to guide decisions about how to design recruitment approaches, measure-
ments, and interventions. Evaluating the methods for recruiting study participants
during a pilot study can provide rough estimates of the number who are available
and willing to enroll, and test the efficiency of different recruitment approaches. Pilot
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studies can also give the investigator an idea of the nature of the populations he will
be sampling—the distributions of age, sex, race, and other characteristics that may
be important to the study. They can be designed to provide data on the feasibility of
measurements, subjective reactions to each procedure and any discomfort it may have
caused, whether there were questionnaire items that were not understood, and ways
to improve the study.

Pilot studies may be particularly helpful for studies that involve a new intervention,
where it is important to determine the dose or intensity, frequency, and duration of the
intervention. For example, a pilot test of a new school-based AIDS education program
designed to prevent HIV infection could help optimize effectiveness by determining
the ideal duration of each training session and number of sessions per week.

Before the study begins, it is a good idea to test study procedures in a full-scale
dress rehearsal. The purpose is to iron out problems with the final set of instruments
and procedures. What appears to be a smooth, problem-free protocol on paper
usually reveals logistic and substantive problems in practice, and the dress rehearsal
will generate improvements in the approach. The investigator himself can serve as a
mock subject to experience the study and the research team from that viewpoint.

Minor Protocol Revisions once Data Collection Has Begun
No matter how carefully the study is designed and the procedures pretested, problems
inevitably appear once the study has begun. The general rule is to make as few changes
as possible at this stage. Sometimes, however, protocol modifications can strengthen
the study.

The decision as to whether a minor change will improve the integrity of the study
is often a trade-off between the benefit that results from the improved methodology
and the disadvantages of altering the uniformity of the study findings and spending
time and money to change the system. Decisions that simply involve making an opera-
tional definition more specific are relatively easy. For example, in a study that excludes
alcoholics, can a recovering alcoholic be included? This decision should be made in
consultation with coinvestigators, but with adequate communication through memos
and the operations manual to ensure that it is applied uniformly by all staff for the
remainder of the study. Often minor adjustments of this sort do not require IRB ap-
proval, particularly if they do not involve changing the protocol that has been approved
by the IRB, but the PI should ask an IRB staff member if there is any uncertainty.

Substantive Protocol Revisions once Data Collection Has Begun
Major changes in the study protocol, such as including different kinds of participants
or changing the intervention or outcome, are a serious problem. Although there may
be good reasons for making these changes, they must be undertaken with a view to
analyzing and reporting the data separately if this will lead to a more appropriate inter-
pretation of the findings. The judgments involved are illustrated by two examples from
the Raloxifene Use for the Heart (RUTH) trial, a multicenter clinical trial of the effect
of treatment with raloxifene on coronary events and breast cancer in 10,101 women at
high risk for coronary heart disease (CHD) events. The initial definition of the primary
outcome was the occurrence of nonfatal myocardial infarction (MI) or coronary death.
Early in the trial, it was noted that the rate of this outcome was lower than expected,
probably because new clinical cointerventions such as thrombolysis and percutaneous
angioplasty lowered the risk. After careful consideration, the RUTH Executive Com-
mittee decided to change the primary outcome to include acute coronary syndromes
other than MI. This change was made early in the trial; appropriate information had
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been collected on potential cardiac events to determine if these met the new criteria
for acute coronary syndrome, allowing the study database to be searched for acute
coronary syndrome events that had occurred before the change was made (1).

Also early in the RUTH trial, results from the Multiple Outcomes of Raloxifene
Evaluation (MORE) trial showed that the relative risk of breast cancer was markedly
reduced by treatment with raloxifene (2). These results were not conclusive, since the
number of breast cancers was small, and there were concerns about generalizability
since all women enrolled in MORE had osteoporosis. To determine if raloxifene
would also reduce the risk of breast cancer in another population—older women
without osteoporosis and at risk for CHD events—the RUTH Executive Committee
decided to add breast cancer as a second primary outcome (1).

Each of these changes was major, requiring a protocol amendment, approval
of the IRB at each clinical site, and approval of the FDA. These are examples of
substantive revisions that enhanced feasibility or the information content of the study
without compromising its overall integrity. Tinkering with the protocol is not always
so successful. Substantive revisions should only be undertaken after weighing the pros
and cons with members of the research team and appropriate advisors such as the
DSMB and funding agency. The investigator must then deal with the potential impact
of the change when he analyzes data and draws the study conclusions.

Closeout
At some point in all longitudinal studies and clinical trials, follow-up of participants
stops. The period during which participants complete their last visit in the study
is often called ‘‘closeout.’’ Closeout of clinical studies presents several issues that
deserve careful planning and implementation. At a minimum, at the closeout visit
staff should thank participants for their time and effort and inform them that their
participation was critical to the success of the study. In addition, closeout may include
the following activities:

• participants (and their physicians) may be informed of the results of laboratory tests
or other measurements that were performed during the study, either in person at
the last visit or later by mail.

• in a blinded clinical trial, participants may be told their treatment status, either at
the last visit, or by mail at the time all participants have completed the trial and the
main data analyses are complete.

• a copy of the main manuscript based on the study results and a press release or other
description of the findings written in lay language may be mailed to participants
(and their physicians) at the time of presentation or publication.

• after all participants have completed the study, they may be invited to a reception
during which the PI thanks them, discusses the results of the study, and answers
questions.

QUALITY CONTROL DURING THE STUDY

Good Clinical Practice
A crucial aspect of clinical research is the approach to ensuring that all aspects of the
study are of the highest quality. Guidelines for high-quality research, called GCP,
were developed to apply specifically to clinical trials that test drugs requiring approval
by the FDA or other regulatory agencies, and are defined as
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‘‘a standard for the design, conduct, performance, monitoring, auditing, record-
ing, analyses, and reporting of clinical trials that provides assurance that the data
and reported results are credible and accurate, and that the rights, integrity, and
confidentiality of trial subjects are protected.’’

Recently, these principles have been increasingly applied to clinical trials sponsored
by federal and other public agencies, and to research designs other than trials
(Table 17.2). GCP requirements are described in detail in the FDA Code of Federal
Regulations Title 21 (3). The International Conference on Harmonization (4)
provides quality control guidelines used by regulatory agencies in Europe, the United
States and Japan.

GCP is best implemented by standard operating procedures (SOPs) for all
study-related activities. The study protocol and operations manual can be considered
SOPs, but often do not cover areas such as how staff are trained and certified, how the
database is developed and tested, or how study files are maintained, kept confidential,
and backed up. Many universities have staff who specialize in processes for meeting
GCP guidelines and various templates and models for SOPs. GCP with respect to
ethical conduct of research is addressed in Chapter 14, and in this chapter we focus
on quality control of study procedures and data management.

Quality Control for Clinical Procedures
It is a good idea to assign one member of the research team to be the quality control co-
ordinator who is responsible for implementing appropriate quality control techniques
for all aspects of the study, supervising staff training and certification, and monitoring
the use of quality control procedures during the study. The goal is to detect possible
problems before they occur, and prevent them. The quality control coordinator may
also be responsible for preparing for and acting as the contact person for audits by
the IRB, FDA, study sponsor, or NIH. Quality control of clinical procedures begins
during the planning phase and continues throughout the study (Table 17.3).

• The operations manual. The operations manual is a very important aspect of
quality control that has been described earlier in this chapter. To illustrate, consider
measuring blood pressure, a partially subjective outcome for which there is no

TABLE 17.2 Aspects of the Conduct of Clinical
Research that are Covered by Good
Clinical Practices

• The design is supported by preclinical, animal and other data as
appropriate

• The study is conducted according to ethical research principles
• A written protocol is carefully followed
• Investigators and those providing clinical care are trained and

qualified
• All clinical and laboratory procedures meet quality standards
• Data are reliable and accurate
• Complete and accurate records are maintained
• Statistical methods are prespecified and carefully followed
• The results are clearly and fairly reported
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TABLE 17.3 Quality Control of Clinical Procedures∗

Steps that precede the study Develop a manual of operations

Define recruitment strategies
Operational definitions of measurements
Standardized instruments and forms
Approach to managing and analyzing the data
Quality control systems
Systems for blinding participants and investigators

Appoint quality control coordinator
Train the research team and document this
Certify the research team and document this

Steps during the study Provide steady and caring leadership
Hold regular staff meetings
Special procedures for drug interventions
Recertify the research team
Periodic performance review
Periodically compare measurements across
technicians and over time

∗ Clinical procedures include blood pressure measurement, structured interview, chart review, etc.

feasible gold standard. The operations manual should give specific instructions for
preparations before the clinic visit (including the timing of taking blood pressure
medication); preparing the participant for the measurement (remove long-sleeved
clothing, sit quietly for 5 minutes); choosing the proper size blood pressure cuff;
locating the brachial artery and applying the cuff; inflating and deflating the cuff;
and recognizing which sounds represent systolic and diastolic blood pressure.

• Training and certification. Standardized training of study staff is essential to
high-quality research. All staff involved in the study should receive appropriate
training before the study begins, and be certified as to competence with regard
to key procedures and measurements. With regard to measurement of blood
pressure, for example, members of the team can be trained in each aspect of
the measurement, required to pass a written test on the relevant section of
the operations manual and to obtain satisfactory readings on mock participants
assessed simultaneously by the instructor using a double-headed stethoscope. The
certification procedure should be supplemented during the study by scheduled
recertifications and a log of training, certification and recertification should be
maintained at the study site.

• Performance review. Supervisors should review the way clinical procedures are
carried out by periodically sitting in on representative clinic visits or telephone calls.
After obtaining the study participant’s permission, the supervisor can be quietly
present for at least one complete example of every kind of interview and technical
procedure each member of his research team performs. This may seem awkward at
first, but it soon becomes comfortable. It is helpful to use a standardized checklist
(provided in advance and based on the protocol and operations manual) during
these observations. Afterward, communication between the supervisor and the re-
search team member can be facilitated by reviewing the checklist and resolving any
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quality control issues that were noted in a positive and nonpejorative fashion. The
timing and results of performance reviews should be recorded in training logs.

Involving peers from the research team as reviewers is useful for building morale
and teamwork, as well as for ensuring the consistent application of standardized
approaches among members of the team who do the same thing. One advantage
of using peers as observers in this system is that all members of the research team
acquire a sense of ownership of the quality control process. Another advantage is
that the observer often learns as much from observing someone else’s performance
as the person at the receiving end of the review procedure.

• Periodic reports. It is important to tabulate data on the technical quality of the
clinical procedures and measurements at regular intervals. This can give clues to the
presence of missing, inaccurate, or imprecise measurements. Differences among
the members of a blood pressure screening team in the mean levels observed over
the past 2 months, for example, can lead to the discovery of differences in their
measurement techniques. Similarly, a gradual change over a period of months in
the standard deviation of sets of readings can indicate a change in the technique
for making the measurement. Periodic reports should also address the success of
recruitment, the timeliness of data entry, the proportion of missing and out-of-
range variables, the time to address data queries, and the success of follow-up and
adherence to the intervention.

• Special procedures for drug interventions. Clinical trials that use drugs, particularly
those that are blinded, require special attention to the quality control of labeling,
drug delivery and storage, dispensing the medication and collecting unused med-
ication. Providing the correct drug and dosage is ensured by carefully planning
with the manufacturer and pharmacy the nature of the drug distribution approach,
by overseeing its implementation, and occasionally by testing the composition of
the blinded study medications to make sure they contain the correct constituents.
Drug studies also require clear procedures and logs for tracking receipt of study
medication, storage, distribution, and return by participants.

Quality Control for Laboratory Procedures
The quality of laboratory procedures can be controlled using many of the ap-
proaches described above for clinical procedures. In addition, the fact that specimens
are being removed from the participants (creating the possibility of mislabeling)
and the technical nature of laboratory tests, lead to special strategies summarized
below (Table 17.4).

• Attention to labeling . When a participant’s blood specimen or electrocardiogram
is mistakenly labeled with another individual’s name, it may be impossible to
correct or even discover the error later. The only solution is prevention, avoiding

TABLE 17.4 Quality Control of Laboratory Procedures∗

Steps that precede the study Use strategies in Table 17.3
Establish good labeling procedures

Steps during the study Use strategies in Table 17.3
Ensure/document proper function of equipment
Use blinded duplicates or standard pools

∗ Laboratory procedures include blood tests, x-rays, electrocardiograms, radiology, pathology, etc.
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transposition errors by carefully checking the participant’s name and number
when labeling each specimen. Computer printouts of labels for blood tubes and
records speed the process of labeling and avoid the digit transpositions that can
occur when numbers are handwritten. A good procedure when transferring serum
from one tube to another is to label the new tube in advance and hold the two
tubes next to each other, reading one out loud while checking the other; this can
also be automated with scannable bar codes.

• Blinding . The task of blinding the observer is easy when it comes to measurements
on specimens, and it is always a good idea to label specimens so that the technician
has no knowledge of the study group or the value of other key variables. Even for
apparently objective procedures, like an automated blood glucose determination,
this precaution reduces opportunities for bias and provides a stronger methods
section when reporting the results. However, blinding laboratory staff means that
there must be clear procedures for reporting abnormal results to a member of
the staff who is qualified to review the results and decide if the participant should
be notified or other action should be taken. In clinical trials, there must also be
strategies in place for (sometimes emergent) unblinding if laboratory measures
indicate abnormalities that might be associated with the trial intervention and
require immediate action.

• Blinded duplicates and standard pools. When specimens or images are sent to
a central laboratory for chemical analysis or interpretation, it may be desirable to
send blinded duplicates—a second specimen from a random subset of participants
given a separate and fictitious ID number—through the same system. This strategy
gives a measure of the precision of the laboratory technique. Another approach
for serum specimens that can be stored frozen is to prepare a pool of serum at the
outset and periodically send aliquots through the system that are blindly labeled with
fictitious ID numbers. Measurements carried out on the serum pool at the outset,
using the best available technique, establish its constituents; the pool is then used
as a gold standard during the study, providing estimates of accuracy and precision.
A third approach, for measurements that have inherent variability such as a Pap test
or mammography readings, is to involve two independent, blinded readers. If both
agree within predefined limits, the result is established. Discordant results may be
resolved by discussion and consensus, or the opinion of a third reader.

• Commercial laboratory contracts. In some studies, biologic measures made on
blood, sera, cells, or tissue are made under contract to commercial laboratories. The
lab must be appropriately licensed and certified and a copy of these certifications
should be on file in the study office. Commercial labs should guarantee timely service
and provide standardized procedures for handling coded specimens, notifying
investigators of abnormal results, and transferring data to the main database.

Quality Control for Data Management
The investigator should set up and pretest the data management system before
the study begins (Chapter 16). This includes designing the forms for recording
measurements, choosing computer hardware and software for data editing and
management and designing the data editing parameters for missing, out-of-range and
illogical entries, testing the data management system and planning dummy tabulations
to ensure that the appropriate variables are collected (Table 17.5).

• Missing data. Missing data can be disastrous if they affect a large proportion of the
measurements, and even a few missing values can sometimes bias the conclusions. A
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TABLE 17.5 Quality Control of Data Management: Steps
that Precede the Study

Be parsimonious: collect only needed variables
Select appropriate computer hardware and software for database management
Program the database to flag missing and out-of-range values
Test the database using missing and out-of-range values
Plan analyses and test with dummy tabulations
Design forms that are

Self-explanatory
Coherent (e.g., multiple-choice options are exhaustive and mutually exclusive)
Clearly formatted with boxes for data entry and arrows directing skip patterns
Printed in lower case using capitals, underlining, and bold font for emphasis
Esthetic and easy to read
Pretested and validated (see Chapter 15)
Labeled on every page with date, name, ID number, and/or bar code

study of the long-term sequelae of an operation that has a delayed mortality rate of
5%, for example, could seriously underestimate this complication if 10% of the par-
ticipants were lost to follow-up and if death were a common reason for losing them.
Erroneous conclusions due to missing data can sometimes be corrected after the
fact—in this case by an intense effort to track down the missing participants—but
often the measurement cannot be replaced. There are statistical techniques for im-
puting missing values based on other information (from baseline or from other
follow-up visits) available for the participant. Although these techniques are useful,
particularly for multivariate analysis in which the accumulation of missing data across
a number of predictor variables could otherwise lead to large proportions of partici-
pants unavailable for analysis, they do not guarantee conclusions free of nonresponse
bias if there are substantial numbers of missing observations.

The only good solution is to design and carry out the study in ways that avoid
missing data, for example, by having a member of the research team check forms
for completeness before the participant leaves the clinic, designing electronic data
entry interfaces that do not allow skipped entries and designing the database so that
missing data are immediately flagged for study staff (Table 17.6). Missing clinical

TABLE 17.6 Quality Control of Data Management: Steps during the
Study

Flag or check for omissions and major errors while participant is still in the clinic
No errors or transpositions in ID number, name code, date on each page
All the correct forms for the specified visit have been filled out
No missing entries or faulty skip patterns
Entries are legible
Values of key variables are within permissible range
Values of key variables are consistent with each other (e.g., age and birth date)

Carry out periodic frequency distributions and variance measures to discover aberrant values
Create other periodic tabulations to discover errors (see Appendix 17.2)
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measurements should be addressed while the participant is still in the clinic when it
is relatively easy to correct errors that are discovered.

• Inaccurate and imprecise data. This is an insidious problem that often remains
undiscovered, particularly when more than one person is involved in making the
measurements. In the worst case, the investigator designs the study and leaves the
collection of the data to his research assistants. When he returns to analyze the
data, some of the measurements may be seriously biased by the consistent use of
an inappropriate technique. This problem is particularly severe when the errors in
the data cannot be detected after the fact. If interviews are carried out with leading
questions or if blood pressure is measured differently in participants known to be
receiving placebo, the database will include serious errors that are undetectable. The
investigator will assume that the variables mean what he intended them to mean,
and, ignorant of the problem, may draw conclusions from his study that are wrong.

Staff training and certification, periodic performance reviews and regular eval-
uation of differences in mean or range of data generated by different staff members
can help identify or prevent these problems. Computerized editing plays an im-
portant role, using data entry and management systems programmed to flag or not
to allow submission of forms with missing, inconsistent, and out-of-range values. A
standardized procedure should be in place for changing original data on any data
form. Generally this should be done as soon after data collection as possible, and
includes marking through the original entry (not erasing it), signing and dating
the change. This provides an ‘‘audit trail’’ to justify changes in data and prevent
fraud. On a computerized database, changing data generally requires generating
a computer-based entry that is recorded with the date, staff ID, and reason for
changing the data.

Periodic tabulation and inspection of frequency distributions of important
variables at regular intervals allows the investigator to assess the completeness and
quality of the data at a time when correction of past errors may still be possible
(e.g., by calling the participant or requesting that the participant return to the study
offices), and when further errors in the remainder of the study can be prevented. A
useful list of topics for quality control reports is provided in Appendix 17.2.

• Fraudulent data. Clinical investigators who lead research teams have to keep
in mind the possibility of an unscrupulous colleague or employee who chooses
fabrication of study information as the easiest way to get the job done. Approaches
to guarding against such a disastrous event include taking great care in choosing
colleagues and staff, developing a strong relationship with them so that ethical
behavior is explicitly understood and rigorously followed by all, being alert to the
possibility of fraud when data are examined, and making unscheduled checks of the
primary source of the data to be sure that they are real.

Collaborative Multicenter Studies
Many research questions require larger numbers of participants than are available in
a single center, and these are often addressed in collaborative studies carried out by
research teams that work in several locations. Sometimes these are all in the same city
or state, and a single investigator can oversee all the research teams. Often, however,
collaborative studies are carried out by investigators in cities thousands of miles apart
with separate funding, and administrative and regulatory structures.

Multicenter studies of this sort require special steps to ensure that all centers are
using the same study procedures and producing comparable data that can be combined
in the analysis of the results. A coordinating center establishes a communication
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network, coordinates the development of the operations manual, forms, and other
standardized quality control aspects of the trial, trains staff at each center who will
make the measurements, and oversees data management, analysis, and publication.
Collaborative studies often have distributed data entry systems with computers or
scanners connected through the Internet.

There is also a need for establishing a governance system with a steering
committee made up of the PIs and representatives of the funding institution, and
with various subcommittees. One subcommittee needs to be responsible for quality
control issues, developing the standardization procedures and the systems for training,
certification, and performance review of study staff. These tend to be complicated
and expensive, providing centralized training for relevant staff from each center, site
visits for performance review and data audits by coordinating center staff and peers
(Appendix 17.2).

In a multicenter study, changes in operational definitions and other study methods
often result from questions raised by a clinical center that are answered by the relevant
study staff or committee and posted on the Internet in a running list to make sure that
everyone involved in the study is aware of changes. If a significant number of changes
accumulate, dated revised pages in the operations manual should be prepared that
include these changes. Small single site studies can follow a simpler pattern, making
notes about changes that are dated and retained in the operations manual.

A Final Thought
A common error in research is the tendency to collect too much data. The fact that
the baseline period is the only chance to measure baseline variables leads to a desire
to include everything that might conceivably be of interest, and there is a tendency to
have more follow-up visits and collect more data at them than is useful. Investigators
tend to collect far more data than they will ever analyze or publish.

One problem with this approach is the time consumed by measuring less important
things; participants become tired and annoyed, and the quality of more important
measurements deteriorates. Another problem is the added size and complexity of the
database, which makes quality control and data analysis more difficult. It is wise to
question the need for every variable that will be collected and to eliminate many that
are optional. Including a few intentional redundancies can improve the validity of
important variables, but parsimony is the general rule.

SUMMARY

1. Successful study implementation begins with assembling resources including
space, staff, and budget for study start-up.

2. The next task is to finalize the protocol through a process of pretesting and pilot
studies of the appropriateness and feasibility of plans for recruitment, measure-
ments, interventions and outcome ascertainment in an effort to minimize the
need for subsequent protocol revisions once data collection has begun.

3. Minor protocol revisions after the study has begun, such as adding an item
to a questionnaire or modifying an operational definition are relatively easily
accomplished, though IRB approval may sometimes be required and data analysis
may be affected.
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4. Major protocol revisions after the study has begun, such as a change in the nature
of the intervention or primary outcome, have major implications and should be
undertaken reluctantly and with the approval of key bodies such as the DSMB,
IRB, and funding institution.

5. The study is then carried out with a systematic approach under the supervision of
a quality control coordinator, following the principles of GCP, and including:
a. Quality control for clinical procedures—operations manual, staff training

and certification, performance review, periodic reports (on recruitment, visit
adherence, and so forth), and team meetings.

b. Quality control for laboratory procedures—blinding and systematically la-
beling specimens taken from study participants, and using standard pools and
blinded duplicates.

c. Quality control of the data management—designing forms and electronic
systems to enable oversight of the completeness, accuracy, and integrity of
collecting, editing, entering, and analyzing the data.

6. Collaborative multicenter studies have special systems for managing the study
and quality control.
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APPENDIX 17.1

Example of an Operations Manual Table of Contents1

Chapter 1. Study protocol
Chapter 2. Organization and policies

Participating units (clinical centers, laboratories, coordinating center, etc.)
Administration and governance (committees, funding agency, safety and

data monitoring, etc.)
Policy concerns (publications and presentations, ancillary studies, conflict of

interest, etc.)
Chapter 3. Recruitment

Eligibility and exclusion criteria
Sampling design
Recruitment approaches (publicity, referral contacts, screening, etc.)
Informed consent

Chapter 4. Clinic visits
Content of the baseline visit
Content and timing of follow-up visits
Follow-up procedures for nonresponders

Chapter 5. Randomization and blinding procedures
Chapter 6. Predictor variables

Measurement procedures
Intervention, including drug labeling, delivery and handling procedures
Assessment of compliance

Chapter 7. Outcome variables
Assessment and adjudication of primary outcomes
Assessment and management of other outcomes and adverse events

Chapter 8. Quality control
Overview and responsibilities
Training in procedures
Certification of staff
Equipment maintenance
Peer review and site visits
Periodic reports

Chapter 9. Data management
Data collection and recording
Data entry
Editing, storage, and backup
Confidentiality
Analysis plans

Chapter 10. Data analysis
Appendices

Letters to participants, primary providers, and so on
Questionnaires, forms
Details on procedures, criteria, and so on

1N.B. This is a model for a large multicenter trial. The manual of operations for a small study can be less elaborate.
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APPENDIX 17.2

Quality Control Tables and Checklists
I. Tabulations for monitoring performance characteristics.2

A. Clinic characteristics
1. Recruitment

a. Number of participants screened for enrollment; number rejected and
tabulation of reasons for rejection

b. Cumulative graph of number recruited compared with that required to
achieve recruitment goal

2. Follow-up
a. Number of completed follow-up examinations for each expected visit;

number seen within specified time frame
b. Number of dropouts and participants who cannot be located for follow-

up
3. Data quantity and quality

a. Number of forms completed, number that generated edit messages, and
number of unanswered edit queries

b. Number of forms missing
4. Protocol adherence

a. Number of ineligible participants enrolled
b. Summary of data on pill counts and other adherence measures by

treatment group
B. Data center characteristics

1. Number of forms received and number awaiting data entry
2. Cumulative list of coding and protocol changes
3. Timetable indicating completed and unfinished tasks

C. Central laboratory characteristics
1. Number of samples received and number analyzed
2. Number of samples inadequately identified, lost, or destroyed
3. Number of samples requiring reanalysis and tabulation of reasons
4. Mean and variance of blind duplicate differences, and secular trend analyses

based on repeat determinations of known standards
D. Reading center characteristics

1. Number of records received and read
2. Number of records received that were improperly labeled or had other

deficiencies (tabulate deficiencies)
3. Analyses of repeat readings as a check on reproducibility of readings and as

a means of monitoring for time shifts in the reading process

II. Site visit components:
A. Site visit to clinical center

1. Private meeting of the site visitors with the PI
2. Meeting of the site visitors with members of the clinic staff
3. Inspection of examining and record storage facilities

2Tables should contain results for the entire study period, and, when appropriate, for the time period covered since production
of the last report. Rates and comparisons among staff and participating units should be provided when appropriate.
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4. Comparison of data contained on randomly selected data forms with those
contained in the computer data file

5. Review of file of data forms and related records to assess completeness and
security against loss or misuse

6. Observation of clinic personnel carrying out specified procedures
7. Check of operations manuals, forms, and other documents on file at the

clinic to assess whether they are up-to-date
8. Observation or verbal walk through of certain procedures (e.g., the series

of examinations needed to determine participant eligibility)
9. Conversations with actual study participants during or after enrollment as

a check on the informed consent process
10. Private conversations with key support personnel to assess their practices

and philosophy with regard to data collection
11. Private meeting with the PI chief concerning identified problems

B. Site visit to data center
1. Review of methods for inventorying data received from clinics
2. Review of methods for data management and verification
3. Assessment of the adequacy of methods for filing and storing paper

records received from clinics, including the security of the storage area
and methods for protecting records against loss or unauthorized use

4. Review of available computing resources
5. Review of method of randomization and of safeguards to protect against

breakdowns in the randomization process
6. Review of data editing procedures
7. Review of computer data file structure and methods for maintaining the

analysis database
8. Review of programming methods both for data management and analysis,

including an assessment of program documentation
9. Comparison of information contained on original study forms with that

in the computer data file
10. Review of methods for generating analysis data files and related data

reports
11. Review of analysis philosophy
12. Review of methods for backing up the main data file
13. Review of master file of key study documents, such as handbooks, manuals,

data forms, minutes of study committees, and so on, for completeness
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18 Community

and International Studies

Norman Hearst and Thomas E. Novotny

Most clinical research takes place in university medical centers or other academic
institutions. Such sites offer many advantages for conducting research, including the
obvious one of having experienced researchers. An established culture, reputation,
and infrastructure for research facilitate the work of everyone from novice investigator
to tenured professor. Success breeds more success, thereby concentrating clinical
research in centers of excellence. This chapter, in contrast, deals with research that
takes place outside of such centers.

We define community research as research that takes place outside the usual uni-
versity or medical center setting and that is designed to meet the needs of the
communities where it is conducted. International research, particularly in poor
countries, can involve many of the same challenges of establishing a research program
where none existed before. Community and international research both often in-
volve collaboration between local investigators and colleagues from an established
research center. Such collaboration can be productive and critical in solving long-
standing or emerging health problems, but it can be challenging because of physical
distance, cultural differences, and funding constraints.

WHY COMMUNITY AND INTERNATIONAL RESEARCH?

Community research is often the only way to address research questions that have to
do with specific settings or populations. Research in academic medical centers tends
to focus on priorities that may be quite different from those in their surrounding
communities, let alone those in distant places. The ‘‘10/90 gap’’ in health research
in which 90% of the global burden of disease receives only 10% of global research
investment (1) is ample justification for more collaborative research that addresses
the enormous health problems of low- and middle-income countries. Furthermore,
participation in the research process has benefits for a community that go beyond the
value of the information collected in a particular study.

291
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TABLE 18.1 Examples of Research Questions Requiring Local Research

What are the rates of child car seat and seat belt use in a low-income neighborhood of Chicago?

What are the patterns of antimicrobial resistance of tuberculosis isolates in Uganda?

What is the impact of a worksite-based AIDS prevention campaign for migrant farm workers in Texas?

What proportion of coronary heart disease among women in Brazil is associated with cigarette smoking?

Local Questions
Many research questions require answers available only through local research.
National or state level data from central sources may not accurately reflect local disease
burdens or the distribution of risk factors in the local community. Interventions,
especially those designed to change behavior, may not have the same effect in
different settings. For example, the public health effectiveness of condom promotion
as an AIDS prevention strategy is quite different in the United States than in Africa (2).
Finding approaches that fit local needs requires local research (Table 18.1).

Biologic data on the pathophysiology of disease and the effectiveness of treat-
ments are usually generalizable to a wide variety of populations and cultures. But
even here there can be racial or genetic differences or differences based on disease
etiology. The efficacy of antihypertensive drugs is different in patients of African and
European descent (3). The causative agents and patterns of antimicrobial sensitivity
for pneumonia are different in Bolivia and Boston.

Greater Generalizability
Community research is sometimes useful for producing results that are more
generalizable. For example, patients with back pain who are seen at referral hospitals
are very different from patients who present with back pain to primary care providers.
Studies of the natural history of back pain or response to treatment at a tertiary care
center therefore may be of limited use for clinical practice in the community.

Partly in response to this problem, several practice-based research networks
have been organized in which physicians from community settings work together
to study research questions of mutual interest (4). An example is the response to
treatment of patients with carpal tunnel syndrome in primary care practices (5). Most
patients improved with conservative therapy; few required referral to specialists or
sophisticated diagnostic tests. This contrasted with the previous literature on the
disease from academic medical centers, which had indicated that the majority of
patients with carpal tunnel syndrome require surgery.

Issues of generalizability are also important in international research. Research
findings from one country will not always apply in another. Although results generalize
best to where the research was done, they may also be relevant for migrant populations
that originated in the country of the research. Such migrant and displaced populations
are of ever increasing importance in a world that had 175 million international migrants
as of the year 2000 (6).

Building Local Capacity
Clinical research should not be the exclusive property of academic medical centers. The
priorities of researchers in these sites are bound to reflect the issues they encounter
in their daily practice or that they believe are of general scientific or economic
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importance. Conducting research in the community setting ensures that questions of
local importance will also be addressed.

The value of community participation in research goes beyond the specific
information collected in each study. Conducting research has a substantial positive
ripple effect by raising local scholarly standards and encouraging creativity and inde-
pendent thinking. Each project builds skills and confidence that allow local researchers
to see themselves as full participants in the scientific process, not just consumers of
knowledge produced elsewhere. This in turn encourages more research. Furthermore,
participating in research can bring intellectual and financial resources to a community
and help encourage local empowerment and self-sufficiency.

COMMUNITY RESEARCH

In theory, community research is much like any other research. The general approach
outlined in this book applies just as well in a small town in rural America or Kathmandu
as it does in San Francisco or London. In practice, the greatest challenge is finding
experienced colleagues or mentors with whom to interact and learn. Such help may not
be available locally. This often leads to an important early decision for would-be local
investigators: to work alone or in collaboration with more established investigators
based elsewhere.

Starting on Your Own
Getting started in research without the help of a more experienced colleague is like
teaching oneself how to swim: it is not impossible, but it is difficult. Sometimes,
however, it is the only option. Following a few rules may make the process easier.

• Start simple. It is seldom a good idea to begin research in a community with a
randomized controlled trial. Small descriptive studies producing useful local data
may make more sense—better a small success than a large failure. More ambitious
projects can be saved for later. For example, a descriptive study of condom use
among young men in Uganda conducted by a novice local researcher served as a first
step toward a larger intervention trial on AIDS prevention in that community (7,8).

• Think of local comparative advantage. What questions can an investigator answer
in his local setting better than anyone else? This usually means leaving the develop-
ment of new laboratory techniques and treatments to the academic medical centers
and drug companies of the world. It is often best for a young investigator to focus
on health problems or populations that are unusual elsewhere, but common in his
community.

• Network. As discussed in Chapter 2, networking is important for any investigator. A
new investigator should make whatever contact he can with scientists elsewhere who
are addressing similar research questions. If formal collaborators are not available,
it may at least be possible to find someone to give feedback on a draft of a research
protocol, a questionnaire, or a manuscript. Attending a scientific conference in one’s
field of interest is a good way to make such contacts. Contacts can also be made at
a distance through telephone, letters, and e-mail. Complimenting a person’s work
(if not overdone) can be a good way to initiate such a contact.
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Collaborative Research
Because it is difficult to get started on one’s own, a good way to begin research
in a community is often in collaboration with more experienced researchers based
elsewhere. There are two main models for such collaboration: top-down and bottom-
up (9).

The top-down model refers to studies that originate in an academic center and
involve community investigators in the recruitment of patients and the conduct of
the study. This occurs, for example, in large multicenter trials that invite hospitals
and clinics to enroll patients into an established research protocol. This approach has
the great advantage that it comes with built-in senior collaborators who are usually
responsible for obtaining the necessary resources and clearances to conduct the study.

Although one can gain valuable experience through this sort of collaboration,
opportunities to develop as a researcher may be limited. Just as important, the
potential benefit to one’s community may be no greater than if the study had been
done elsewhere. Once the study is over, the academic center or drug company may
cut off involvement quickly with little or nothing left behind in the community.

In the bottom-up model, established investigators provide guidance and technical
assistance to local investigators and communities developing their own research
agendas. Some academic medical centers offer training programs for community
investigators or international researchers. If one can gain access to such a program
or establish an equivalent relationship, this can be ideal for building local research
capacity, especially when such a partnership is sustained on a long-term basis. But
establishing an institutional relationship of this type is not easy. Supporting bottom-up
community research can be time consuming and therefore expensive. Most funding
agencies are more interested in sponsoring specific research projects than in building
local research capacity. Even when funding to cover expenses is available, experienced
investigators may prefer to spend their time conducting their own research rather
than helping others get started.

Community researchers need to take advantage of the potential incentives they
can offer to more established investigators with whom they would like to work. In
the top-down model, the most important thing they can offer is access to subjects.
In the bottom-up model, the incentives can include the intrinsic scientific merit of a
study in the community, coauthorship of resulting publications, and the satisfaction
of helping a less experienced colleague in a worthwhile endeavor.

To start a new research program, the ideal option may be to form a long-
term partnership with an established research institution. Collaboration under such
a structure can include a combination of top-down and bottom-up projects. It must
be remembered, however, that good research collaboration is fundamentally between
individual investigators. An academic institution may provide the climate, structure,
and resources that support individual collaboration, but the individuals themselves
must provide the cultural sensitivity, mutual respect, hard work, and long-term
commitment to make it work.

INTERNATIONAL RESEARCH

International research often involves collaboration between groups with different
levels of experience and resources and therefore is subject to many of the same issues as
community research. However, international research brings additional challenges.
The issues described below are especially important.
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Barriers of Distance, Language, and Culture
Because of the distances involved, opportunities for face-to-face communication
between international colleagues are limited. If at all possible, colleagues on both
sides should make at least one site visit to each other’s institutions. International
conferences may sometimes provide additional opportunities to meet, but such
opportunities are likely to be rare. Fortunately, wireless communications, faxes, and
e-mail (perhaps with voice-over capability and wide-band video capacity) have made
international communication easier, faster, and less expensive. Good communication
is possible at any distance, but it requires effort on both sides. The most modern
methods of communication are of no help if they are not used regularly. Lack of
frequent communication and prompt response to queries made on either side is a sign
that a long-distance collaboration may be in trouble.

Language differences are often superimposed on the communication barriers
caused by distance. If the first language spoken by investigators at all sites is not the
same, it is important that there be a language that everyone can use. Expecting all
interactions to be in English places investigators in poor countries at a disadvantage.
Foreign investigators who do not speak the local language are unlikely to have more
than a superficial understanding of the country’s culture and cannot participate fully in
many key aspects of a study, including questionnaire development and conversations
with study subjects and research assistants. This is especially important in studies with
behavioral components.

Even when linguistic barriers are overcome, cultural differences can cause serious
misunderstandings between investigators and their subjects or between investigators.
Literal word-by-word translations of questionnaires may have different meanings,
be culturally inappropriate, or omit key local factors. Institutional norms may be
different. For example, in some settings, a foreign collaborator’s department chief
who had little direct involvement in a study might expect to be first author of the
resulting publication. Such issues should be anticipated and clearly laid out in advance
as part of the important process of gaining high-level local institutional support for the
project. Patience, good will, and flexibility on all sides can usually surmount problems
of this type. For larger projects, it may be advisable to include an anthropologist,
ethicist, or other expert on cultural issues as part of the research team.

Frequent, clear, and open communication and prompt clarification of any ques-
tions or confusion are essential. When dealing with cultural and language differences,
it is better to be repetitive and risk stating the obvious than to make incorrect
assumptions about what the other person thinks. Written affiliation agreements that
spell out mutual responsibilities and obligations may help clarify issues such as data
ownership, authorship order, publication rights, and decisions regarding the framing
of research results. Development of such agreements requires the personal and careful
attention of collaborators from both sides.

Issues of Funding
Because of economic inequities, collaboration between institutions in rich and poor
countries is generally only possible with funding originating from the rich country
or, less often, from other rich countries or international organizations. An increasing
number of large donor organizations are active in global health research, but often
their support is limited to a specific research agenda. Donor funding tends to flow
through the institution in the rich country, reinforcing the subordinate position of
institutions in poor countries. As in any situation with an unequal balance of power,
this creates a potential for exploitation. When investigators from rich countries control
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the purse strings, it is not uncommon for them to treat their counterparts in poor
countries more like employees than colleagues. International donors and funding
agencies need to be especially careful to discourage this and instead to promote true
joint governance of collaborative activities.

Different practices of financial management are another potential area for
conflict between cultures. Institutions in rich countries may attempt to impose
accounting standards that are difficult or impossible to meet locally. Institutions in
poor countries may load budgets with computers and other equipment that they
expect to keep after the study is over. Although this is understandable given their
needs and lack of alternative funding sources, it is important that any subsidies
beyond the actual cost of conducting the research be clearly negotiated and that
the potential for diversion of funds by institutions or individuals be minimized.
Conversely, institutional overheads and higher investigator salaries often create the
inequitable situation of the majority of funding for collaborative research staying in
the rich country even when most of the work is in the poor country.

Source country institutions and donors should pay particular attention to building
the research administration capacity of local partners. This could mean providing
administrative and budgetary training or using consultants in the field to help with
local administrative tasks. Effort invested in developing administrative capacity may
pay off in improved responsiveness to deadlines, more efficient reporting, avoiding
unnecessary conflict, and building a solid infrastructure for future research.

Ethical Issues
International research raises ethical issues that must be faced squarely. All the general
ethical issues for research apply (Chapter 14). Because international research presents
an enhanced potential for exploitation, it also requires additional considerations and
safeguards.

What, for example, is the appropriate comparison group when testing new
treatments in a poor country where conventional treatment is unavailable? Placebo
controls are unethical when other effective treatments are the standard of care in a
community. But what is the ‘‘standard of care’’ in a community where most people
are too poor to afford proven treatments? On the one hand, it may not be possible
for investigators to provide state-of-the-art treatment to every participant in a study.
On the other hand, allowing placebo controls simply because people are poor may
encourage drug companies and others to test their new treatments in poor countries
without proper protections and benefits for volunteers. Studies in poor countries of
expensive antiretroviral drugs have drawn new attention to these concerns (10,11).

A related issue has to do with testing treatments that, even if proven effective,
are unlikely to be economically accessible to the population of the host country. Are
such studies ethical, even if they follow all the usual rules? If not, what proportion of
study subjects should be able to afford the new treatment to make the study ethical?
These questions do not have simple answers. Established international conventions
governing ethical research, such as the Declaration of Helsinki, have been challenged
and are subject to multiple interpretations (12,13).

A key test may be to consider why the study is being conducted in a poor country
in the first place. If the true goal is to gather information to help the people of that
country, this should weigh in favor of the study. Ideally, the goal of research should be
sustainable change and added value for the host country (14). If, on the other hand,
the goal is expediency or to avoid obstacles to doing the study in a rich country, the



Chapter 18 ■ Community and International Studies 297

study should be subject to all ethical requirements that would apply in the sponsoring
country.

For this and other reasons, studies in poor countries that are directed or funded
from elsewhere should be approved by ethical review boards in both countries.
Although such approval is necessary, it does not guarantee that a study is ethical.
Systems for ethical review of research in many poor countries are weak or nonexistent
and can sometimes be manipulated by local investigators or politicians who stand
to benefit from a study. Conversely, review boards in rich countries are sometimes
ignorant of or insensitive to the special issues involved in international research.
Official approval does not remove the final responsibility for the ethical conduct of
research from the investigators themselves.

Less talked about but also important are ethical issues in the treatment of
collaborators from poor countries. Several issues must be agreed upon in advance.
Who owns the data that will be generated? Who needs whose permission to conduct
and publish analyses? Will local investigators get the support they need to prepare
manuscripts for international publication without having to pay for this by giving up
first authorship? How long a commitment is being made on both sides? A large recent
trial in several poor countries of voluntary counseling and testing to prevent HIV
infection abruptly dropped its collaborating site in Indonesia (15). According to the
investigators, this was because the outcome variable of interest (HIV seroconversion)
turned out to be less common at that site than projected in the study’s power
calculations. Although this decision made practical sense, it was perceived by the
Indonesians as a breach of faith.

Other ethical issues may have to do with local economic and political realities.
For example, a planned clinical trial of pre-exposure HIV prophylaxis with tenofovir
for commercial sex workers recently was cancelled although it had been cleared by
multinational ethical review boards (16). The intended study subjects were concerned
that they might end up with no source of medical care for problems related to HIV
infection or drug effects and were not willing to participate without guarantees of
lifetime health insurance. The Prime Minister of the country intervened to stop the
trial.

Finally, an explicit goal of all international collaboration should be to increase
local research capacity. What skills and equipment will the project leave behind
when completed? What training activities will take place for project staff? Will local
researchers participate in international conferences? Will this be only for high-level
local investigators who already have many such opportunities, or will junior colleagues
have a chance as well? Will the local researchers be true collaborators and principal
authors of publications, or are they simply being hired to collect data? Scientists in
poor countries should ask and expect clear answers to these questions. As summarized
in Table 18.2, good communication and long-term commitment are recurring
themes in successful international collaborative research.

Risks and Frustrations
Researchers from rich countries who contemplate becoming involved in international
research need to start with a realistic appreciation of the difficulties and risks involved.
Launching such work is usually a long, slow process. Bureaucratic obstacles are
common on both ends. In countries that lack infrastructure and political stability,
years of work can be vulnerable to major disruption from natural or manmade
catastrophe. In extreme cases, these can threaten the safety of project staff or
investigators. For example, important collaborative AIDS research programs that had
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TABLE 18.2 Strategies to Improve International Collaborative Research

Scientists in poor countries
Choose collaborators carefully
Learn English (or other language of collaborators)
Become familiar with the international scientific literature in area of study
Be sure that collaboration will build local research capacity
Clarify administrative and scientific expectations in advance

Scientists in rich countries
Choose collaborators carefully
Learn the local language and culture
Be sensitive to local ethical issues
Encourage local collaboration in all aspects of the research process
Clarify administrative and scientific expectations in advance

Funding agencies
Set funding priorities based on public health need
Encourage true collaboration rather than a purely ‘‘top-down’’ model
Recognize the importance of building local research capacity
Make subsidies for local equipment and infrastructure explicit
Be sure that overhead and high salaries in the rich country do not take too much of the budget

been built over many years were completely destroyed by recent civil wars in Rwanda
and the Congo.

Less catastrophic and more common are the daily hardships and health risks
that expatriate researchers may face, ranging from unsafe water and malaria to smog,
common crime, and traffic accidents. Key requirements to help insure safety of
researchers working abroad include evacuation and repatriation insurance, good pre-
travel health advice, registration with their Embassy or Consulate in the host country,
and awareness of any special risks or instability in the host country. The US Centers
for Disease Control and Prevention website provides excellent health information
(http://www.cdc.gov/travel/), and the US Department of State website provides up-
to-date information on registration, evacuation, and safety for international travelers
(http://www.state.gov/travelandbusiness/).

Another frustration for researchers in poor countries is the difficulty in applying
their findings. Even when new strategies for preventing or treating disease can be
successfully developed and proven to be effective, lack of political will and resources
often thwarts their widespread application. Researchers need to be realistic in their
expectations, gear their work toward investigating strategies that would be feasible to
implement if found effective, and be prepared to act as advocates for improving the
health of the populations they study.

The Rewards
Despite the difficulties, the need for more health research in many parts of the world
is overwhelming. Many investigators in major academic centers wonder how much
difference their work really makes. It often seems that there are plenty of other
qualified people who could do the job just about as well as they do. By participating
in international research, an investigator in a rich country can sometimes have a far
greater and more immediate impact on people’s lives than would be possible by

http://www.cdc.gov/travel/
http://www.state.gov/travelandbusiness/
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staying within the walls of his own university. This impact comes not only from
the research itself but also from doing one’s own small part to foster international
collaboration.

Many of the potential problems with international research have their positive
aspects. Although funding is harder to obtain, the same amount of money can go
much further (17). Cross-cultural collaboration is as rewarding as it is difficult. The
chance to have meaningful involvement and make a real contribution in a foreign
land is a rare privilege. Furthermore, it can teach unexpected lessons that enrich
careers and lives. All stand to gain through increased collaboration and expanding
the traditional settings for research

SUMMARY

1. Community and international research is necessary to discover regional differ-
ences in such things as the epidemiology of a disease or the cultural factors that
determine which interventions will be effective.

2. Local participation in clinical research can have secondary benefits to the region
such as enhanced levels of scholarship and self-sufficiency.

3. Although the theoretical issues involved in research are broadly applicable, prac-
tical issues such as acquiring funding and mentoring are more difficult in a
community setting; tips for success include starting small, thinking of local
advantages, and networking.

4. Collaboration between academic medical centers and community researchers
can follow a top-down model (community investigators conduct studies that
originate from the academic center) or a bottom-up model (investigators from
the academic center help community investigators conduct their own research).

5. International research involves many of the same issues as community research
with additional challenges related to communication and language, cultural
differences, funding, unequal balance of power, financial and administrative
practices, and ethics.

6. Overcoming these challenges can bring the rewards of helping people in need, a
large public health impact, and rich cross-cultural experiences.
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19 Writing and Funding

a Research Proposal

Steven R. Cummings and Stephen B. Hulley

The protocol is the detailed written plan of the study. Writing the protocol forces
the investigator to organize, clarify, and refine all the elements of the study, and this
enhances the scientific rigor and the efficiency of the project. Even if the investigator
does not require funding for a study, a protocol is necessary for guiding the work.
A proposal is a document written for the purpose of obtaining funds from granting
agencies. It contains the study protocol, the budget, and other administrative and
supporting information that is required by the specific agency or board. This chapter
will focus on the structure of a proposal and on how to write one that will be successful
in getting funded.

WRITING PROPOSALS

The task of preparing a proposal generally requires several months of organizing,
writing, and revising. The following steps can help the project to get off to a good start.

• Decide where the proposal will be submitted. Every funding agency has its own
unique process and requirements for proposals. Therefore, the investigator should
start by deciding where the proposal will be submitted, determining the limit on
amounts of funding, and obtaining detailed guidelines about how to craft the
proposal for that particular agency.

• Organize a team and designate a leader. Most proposals are written by a team of
several people who will eventually carry out the study. This team may be small (just
the investigator and his mentor) or large (including collaborators, a biostatistician,
a fiscal administrator, and support staff). It is important that this team include or
have access to the main expertise needed for designing and implementing the study.

One member of the team must assume the responsibility for leading the effort.
Generally this individual is the principal investigator (PI), who will have the
ultimate authority and accountability for the study. The PI should generally be an

301



302 Implementation

experienced scientist whose knowledge and wisdom are useful for design decisions
and whose track record with previous studies increases the likelihood of a successful
study and, therefore, of funding (reviewers give considerable weight to the value of
experience). Some studies also have a Co-PI, often a junior scientist who will serve
as the day-to-day manager of the study and coordinate the proposal-writing effort.
Either the PI or the Co-PI must exert steady leadership, delegating responsibilities
for writing and other tasks, setting deadlines, conducting periodic meetings of the
team, and ensuring that all the necessary tasks are completed on time.

• Follow the guidelines of the funding agency. All funding sources provide written
guidelines that the investigator must carefully study before starting to write the
proposal. This information includes instructions for organizing the proposal, page
limits, information on the amount of money that can be requested, and elements
that must be included in the proposal.

However, these guidelines do not contain all the important information that
the investigator needs to know about the operations and the preferences of the
funding agencies. The NIH and private foundations have scientific administrators
whose job is to help investigators design their proposals to be more responsive
to the agency’s funding policies. Early in the development of the proposal it is a
good idea to discuss the plan with an individual at the agency who can clarify
what the agency prefers (such as budgetary limits and the scope and detail required
in the proposal) and confirm that the research plan is within the bounds of the
agency’s interests. The initial contact can be made by e-mail or letter, but a series
of telephone calls or even a visit is a better way to establish a relationship and get
information that will lead to a fundable proposal.

It is useful to make a checklist of the details that are required, and to carefully
review the checklist before sending the proposal. Rejection of an otherwise excellent
proposal for lack of adherence to details is a frustrating and avoidable experience.

• Establish a timetable and meet periodically. A schedule for completing the writing
tasks keeps gentle pressure on team members to meet their obligations on time.
In addition to addressing the scientific components specified by the funding
agency, the timetable should take into account the administrative requirements
of the institution that will sponsor the research. Universities often require a
time-consuming review of the budget and subcontracts before a proposal can be
submitted to the funding agency. Leaving these details to the end can precipitate a
last-minute crisis that damages an otherwise well-done proposal.

A timetable generally works best if it specifies deadlines for written products
and if each individual participates in setting his own assignments. The timetable
should be reviewed at periodic meetings of the writing team to check that the tasks
are on schedule and the deadlines still realistic.

• Find a model proposal. It is helpful to borrow from a colleague a successful recent
proposal to the agency from which funding is being sought. Successful applications
illustrate in a concrete way the format and content of a good proposal. The
investigator can find inspiration for new ideas from the model and then design and
write a proposal that is even clearer, more logical, and more persuasive. It is also a
good idea to borrow examples of written criticisms that have been provided by the
agency for previous successful or unsuccessful proposals. This will illustrate the key
points that are important to the scientists who will be reviewing the proposal.

NIH proposals of interest can be identified by using the Internet to search the
NIH ‘‘CRISP’’ (Computer Retrieval of Information on Scientific Projects) database
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of funded grants. Copies of funded proposals can be obtained by writing to the PI
or, as a last resort, through the Freedom of Information Act.

• Work from an outline. Begin by setting out the proposal in outline form
(Table 19.1). This provides a starting point for writing and is useful for orga-
nizing the tasks that need to be done. If several people will be working on the
grant, the outline helps in assigning responsibilities for writing parts of the proposal.
One of the most common road blocks to creating an outline is the feeling that
an entire plan must be worked out before starting to write the first sentence. The
investigator should put this notion aside and let his thoughts flow onto paper,
creating the raw material for editing, refining, and getting specific advice from
colleagues.

• Review, pretest, and revise repeatedly. Writing a proposal is an iterative process;
there are usually many versions, each reflecting new ideas, advice, and pretest
experiences. Before the final draft is written, the proposal should be critically
reviewed by colleagues who are familiar with the subject matter and funding agency.
Particular attention should go to the quality of the research question, the validity of
the design and methods, and the clarity of the writing. It is better to have sharp and
detailed criticism before the proposal is submitted than to have the project rejected
because of failure to anticipate and address potential problems. When the proposal
is nearly ready for submission, the final step is to review it carefully for internal
consistency, format, adherence to agency guidelines, and typographical errors.

ELEMENTS OF A PROPOSAL

The most important elements of a proposal are set out in Table 19.1 in the sequence
required by the NIH. Some funding institutions may require less information or a
different format, and the investigator should organize the proposal according to the
guidelines of the agency that will receive the proposal (generally available on the
Web).

The Beginning
The title should be descriptive and concise. It provides the first impression and a
lasting reminder of the content and design of the study. A good title manages to
summarize these elements, achieving brevity by avoiding unnecessary phrases like ‘‘A
study to determine the. . . . ’’ In an NIH grant application, the choice of words in the
title is important because it can influence the decision on which study section (review
group) and institute will receive the protocol.

The abstract is a concise summary of the protocol that should begin with the
research question and rationale, then set out the design and methods, and conclude
with a statement of the importance of potential findings of the study. Most agencies
require that the abstract be kept within a limited number of words, so it is best to use
efficient and descriptive terms. The abstract will generally be written after the other
protocol elements are settled, and it should go through enough revisions to ensure
that it is first rate. This will be the only page read by some reviewers, and a convenient
reminder of the specifics of the proposal for everyone else. It must therefore stand on
its own, incorporating all the main features of the proposed study and persuasively
revealing the strengths.
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TABLE 19.1 Main Elements of a Proposal, Based on the
NIH Model

Title

Abstract

Administrative parts

Budget and budget justification

Biosketches of investigators

Resources, equipment, physical facilities

Specific aims

Background and significance

Preliminary studies and experience of the investigators

Methods

Overview of design

Study subjects

Selection criteria

Design for sampling

Plans for recruitment

Measurements

Main predictor variables (intervention, if an experiment)

Potential confounding variables

Outcome variables

Statistical issues

Approach to statistical analyses

Hypotheses, sample size, and power

Quality control and data management

Timetable and organizational chart

Limitations and issues

Ethical considerations

References

Appendices and collaborative agreements
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The Administrative Parts
Almost all agencies require an administrative section that includes a budget and
a description of the qualifications of personnel and the institution and access to
equipment, space, and expertise.

The budget section is generally organized according to guidelines from the
funding institution. The NIH, for example, has a prescribed format that requires a
detailed budget for the first 12-month period and a summary budget for the entire
proposed project period (usually 3–5 years). The detailed 12-month budget includes
the following categories of expenses: personnel (including names and positions of
all persons involved in the project, the percent of time each will devote to the
project, and the dollar amounts of salary and fringe benefits listed separately for
each individual); consultant costs; equipment (itemized); supplies (itemized); travel
(itemized); patient care costs; alterations and renovations; consortium/contractual
costs; and other expenses (e.g., the costs of telephones, mail, copying, illustration,
publication, books, and fee-for-service contracts).

The budget should not be left until the last minute. Many elements require time
(to get good estimates of the cost of space, equipment, and personnel). The best
approach is to notify a knowledgeable administrator as soon as possible about the
plan to submit a proposal and schedule regular meetings with him to review progress
and a written timeline for finishing the administrative section. An administrator can
begin working as soon as the outline of the proposal is formulated, recommending
the amounts for budget items. Institutions have regulations that must be followed
and deadlines to meet, and an experienced administrator can help the investigator
anticipate institutional rules, pitfalls, and potential delays. The administrator can also
be very helpful in drafting the text of the sections on budget and resources, and in
collecting the biosketches, appendices, and other supporting materials.

The need for the amounts requested for each item of the budget must be fully
explained in a budget justification. Salaries will generally comprise most of the overall
cost of a typical clinical research project, so it is important to show the need for each
person and his effort. Carefully conceived job descriptions for the investigators and
other members of the research team should leave no doubt in the reviewers’ minds
that the estimated effort of each individual is essential to the success of the project.

Reviewers often look at the percentages of time committed by key members of
the project. Occasionally, proposals may be criticized because key members of the
research team have only a very small (5%) commitment of time listed in the budget
and a large number of other studies listed in their ‘‘other support’’ (implying that
they have too many other commitments to be able to devote the necessary energy to
the proposed study). On the other hand, the reviewers may also balk at percentages
that are inflated beyond the requirements of the job description.

Even the best-planned budgets will change as the needs of the study change or
there are unexpected expenses and savings. In general, once the grant is awarded the
investigator is allowed to spend money in different ways from those specified in the
budget, provided that the changes are modest and the expenditures are all appropriate
to the study. When the investigator wants to move money across categories or to
make a substantial change (up or down) in the effort of key investigators, he may
need to get approval from the funding agency. Agencies generally approve reasonable
requests for rebudgeting so long as the investigator is not asking for an increase in
total funds.

The biosketches of investigators are four-page resumes that include academic
degrees, current and previous employment, honors, recent and pertinent publications,
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and descriptions of recent research grants and contracts. The sections on resources
available to the project, including computer and technical equipment and office and
laboratory space, often draw on ‘‘boilerplate’’ in previous grants by colleagues in the
investigator’s institution.

Aims and Significance
The specific aims are statements of the research question and plan using a concise
format that specifies in concrete terms the desired outcome. When appropriate, aims
may be expressed as testable hypotheses. Most research proposals have several, and
after an introductory paragraph these should be presented in a logical sequence.
Sometimes this means putting them in order of importance, and sometimes in
chronological order (objectives served by baseline data first, then those related to
follow-up). Sometimes, as in the following example, a logical approach is to present
the administrative aims first, then the scientific aims:

1. To recruit 400 healthy men, 40–59 years old into a randomized blinded trial of the
effects of a testosterone patch.

2. To test the hypothesis that compared with men assigned to receive a placebo patch, those
assigned to receive the testosterone patch will have
a. less bone loss
b. an increase in quadriceps muscle strength
c. a decreased risk of falling.

The specific aims section can also serve as an outline for organizing later sections; the
components of the significance and methods sections should usually follow a parallel
sequence.

When a study has many facets, it is tempting to impress the reader with a long
and detailed listing of specific aims. This strategy may backfire, creating a proposal
that is overly ambitious or cluttered. When numerous specific aims are possible, it is
best to propose only the most important and interesting ones. In general, this should
not exceed one page.

The background and significance section sets the proposal in context, describing
the background in the field under study. It should be written, as much as possible,
in a way that is comprehensible to someone who is not an expert in that field.
Enough information should be given to make clear what this particular study will
accomplish and why it is important. How, specifically, will the study findings advance
understanding, change clinical practice, or influence policy?

The purpose of this section is to demonstrate that the investigator understands
what has been accomplished, what the problems are, and what needs to be done.
The appropriate breadth or detail of the review depends on the scope of the specific
aims, the complexity of the field, and the expectations of the review panel. Reviewers
usually appreciate a thoughtful critical review of the most important previous studies
rather than an exhaustive superficial catalogue of previous publications.

The preliminary studies and experience of the investigators section should
concisely describe relevant previous research and skills of the investigator; a limited
number of preprints can be included in appendices. Emphasis should be placed on
the importance of the previous work and on the reasons it should be continued or
extended. Pilot studies that support the research question and the feasibility of the
study are important to many types of proposals, especially when the research team
has little previous experience in the area to be studied, when the question is novel,
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and when there may be doubts about the feasibility of the proposed procedures or
recruitment of subjects. Results of these studies should be highlighted here, with
details provided in the appendices.

The Scientific Methods
The methods section generally receives close scrutiny from reviewers, and it will later
serve as the basis for the operations manual for carrying out the study. Weakness in the
technical methods is a common reason that proposals fail to be approved or funded
by the NIH. For these reasons, this section deserves careful attention to detail.

The first concern is how to organize the section. Sometimes agencies provide
guidelines about how to organize the methods. If not, we recommend the components
and sequence listed in Table 19.1. A detailed table of the contents of the methods
section can be very helpful at this point, and an overview of the design, sometimes
accompanied by a schematic diagram or table, is essential for orienting the reader
(Table 19.2).

The other specific components of the methods section have been discussed in
other parts of this book. The subjects and measurements (Chapters 3 and 4),
pretest plans, data management, and quality control (Chapters 16 and 17) are
the centerpiece of the proposal, and require sufficient detail so that sophisticated
reviewers will understand exactly how the study will be performed and the reasons
for the design choices. Long descriptions of some techniques, such as the details of
biochemical assays or of questionnaires, can be put into an appendix unless they are
crucial to the evaluation of scientific merit.

The statistical section should usually begin with the plans for analysis. This
can be set out in the logical sequence, first the descriptive tabulations and then
the approach to analyzing associations among variables. This will lead to the topic

TABLE 19.2 Study Timeline for a Randomized Trial of the Effect
of Testosterone Administration on Risk Factors for Heart Disease,
Prostate Cancer, and Fractures

Screening
Visit Randomization 3 Months 6 Months 12 Months

Medical history X — — — X

Blood pressure X X X X X

Prostate examination X — — — X

Prostate specific antigen X — — — X

Blood lipid levels — X X X X

Markers of inflammation — X — — X

Bone density — X — — X

Markers of bone turnover — X X — X

Handgrip strength — X X X X

Adverse events — — X X X
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1st half 2nd half 1st half 2nd half 1st half 2nd half 1st half 2nd half 1st half

Qtr 1 Qtr 2 Qtr 3 Qtr 4 Qtr 1 Qtr 2 Qtr 3 Qtr 4 Qtr 1 Qtr 2 Qtr 3 Qtr 4 Qtr 1 Qtr 2 Qtr 3 Qtr 4 Qtr 1 Qtr 2
Task

1. Preparation of
instruments

2. Recruitment of
subjects

3. Follow-up visits
and data collection

4. Cleaning data

5. Analysis and
writing

FIGURE 19.1. A hypothetical timetable.

of sample size (Chapters 5 and 6), which should begin with a statement of the
null hypotheses and the choice of statistical test before giving the sample size and
power estimates at the specified alpha, and effect size. Most NIH review panels attach
considerable importance to the statistical section, so it is a good idea to involve a
statistician in writing, or at least in reviewing, this component of the proposal.

The proposal must provide a realistic work plan and timetable, including dates
when each major phase of the study will be started and completed (Fig. 19.1). Similar
timetables can be prepared for staffing patterns and other components of the project.
For large studies, an organizational chart describing the research team should indicate
levels of authority and accountability, and show how the team will function.

Final Pieces
The human subjects section is devoted to the ethical issues raised by the study,
setting forth the issues of safety, privacy, and confidentiality. This section should
indicate the specific plans to inform potential subjects of the risks and benefits, and to
obtain their consent to participate (Chapter 14). It is an appropriate place to describe
the inclusion of women, children and participants from minority groups, as required
of NIH proposals, expanding on information provided in the methods section.

The references send a message about the investigator’s familiarity with a field.
They should be comprehensive but parsimonious, up to date and balanced—not an
exhaustive and unselected list. Each reference should be cited accurately; errors in
these citations or misinterpretation of the work will be viewed negatively by reviewers
who are familiar with the field of research.

Information that is important for all reviewers to understand about the research
plan should generally not be put in an appendix; in NIH study sections only
the primary and secondary reviewers—usually about three—receive the appendices.
However the appendices are useful for detailed technical and supporting material
can be mentioned or described briefly in the main text. Examples are highly rele-
vant preprints or in-progress reports by the investigators, questionnaires, and long
descriptions of measurements that might be a useful reference for a reviewer.

The proposed use and value of each consultant should be described, accompa-
nied by a signed letter of agreement from the individual and a copy of his biosketch.
(Investigators with effort listed in the budget should not provide letters, because they
are officially part of the proposal.) An explanation of the programmatic and administra-
tive arrangements between the applicant organization and collaborating institutions,
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labs, and so on should be included, accompanied by letters of commitment from
responsible officials addressed to the investigator.

Writing Proposals for Career Development Awards
The research plan is only one element of proposals for career development awards.
These proposals emphasize descriptions of the candidate and his strategy for develop-
ing a career in research, including plans for training in research. They generally require
evidence of commitment from a mentor who has a strong track record in research and
mentoring, and from the applicants institution (1). The requirements and criteria for
review of applications for NIH career development awards are available on the NIH
Web site.

CHARACTERISTICS OF GOOD PROPOSALS

A good proposal for a research project has several attributes. First is the scientific
quality of the research plan: it must be based on a good research question, use a
design and methods that are rigorous and feasible, and have a research team with
sufficient experience, skill, and commitment to carry it out (2,3).

Clarity of presentation is one of the most important determinants of the fate
of grant applications. Even if the research question is important and the study plan
excellent, a poor presentation can leave the reviewer confused and uninterested. The
proposal should be concise and engaging, and not lose the attention of the reviewer
with writing that wanders vaguely through peripheral topics. A proposal that is well
organized, thoughtfully written, attractively presented, and free of errors reassures the
reader that the conduct of research is likely to be of similar quality.

Reviewers are often overwhelmed by a large stack of lengthy proposals, so the
merits of the project must stand out in a way that will not be missed even with a quick
and cursory reading. Clear outlines, short sections with meaningful subheadings,
brief point-by-point summaries, concise tables, and simple diagrams can guide the
reviewer’s understanding of the most important features of the proposal. It is good
to leave some white space on the pages.

Most reviewers are sophisticated, and are put off by overstatement and other
heavy-handed forms of grantsmanship. Proposals that exaggerate the importance of
the project or overestimate what it can accomplish will generate skepticism. Writing
with enthusiasm is a good idea, but the investigator should be realistic about the
limitations of the project. Most reviewers are adept at identifying potential problems
in the design or feasibility of a research project.

Rather than ignore potential flaws, an investigator can address them explicitly,
discussing the advantages and disadvantages of the various trade-offs in reaching the
chosen plan. It is a mistake to overemphasize these problems, however, for this may
lead a reviewer to focus disproportionately on the weaker aspects of the proposal and
to overlook its strengths. The goal is to reassure the reviewer that the investigator
has anticipated the potential problems and has a realistic and thoughtful approach
to dealing with them. If the investigator thinks of issues that are not fully resolved
in the main body of the proposal, it may be useful to pose these as questions with
thoughtful and balanced answers in a ‘‘Questions and Issues’’ section at the end of
the methods section.

A final round of scientific review by skilled scientists who have not been centrally
involved, at a point in time when substantial changes are still possible, can be
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extraordinarily helpful to the proposal as well as a rewarding collegial experience. The
investigator should leave time in the last week or two before the deadline to have
someone with excellent writing skills read the proposal for clarity, grammatical errors,
and spelling errors that are missed by word-processing spell- and grammar-check
programs.

FINDING SUPPORT FOR RESEARCH

Investigators should be alert to opportunities to conduct good research without
formal proposals for funding. For example, a beginning researcher may himself
analyze data sets that have been collected by others, or receive small amounts of staff
time from senior scientists or his department to conduct small studies. Conducting
research without funding of formal proposals is generally quicker and simpler but
has the disadvantage that the projects must be inexpensive and limited in scope.
Furthermore, academic institutions often base decisions about advancement in part
on a faculty member’s track record of garnering external funding for research. There
are four main sources of funds for medical research:

• the government (notably NIH, but also Centers for Disease Control and Preven-
tion (CDC), and many other federal, state and county agencies);

• private nonprofit institutions (notably foundations and professional societies);
• profit-making corporations (notably pharmaceutical companies); and
• intramural resources (e.g., from the investigator’s university).

Getting support from these sources is a complex and competitive process that favors
investigators with experience and tenacity, and beginning investigators are well
advised to find a mentor with these characteristics. In the sections below, we focus on
several of the most important of these; for a complete listing, try the The American
Association for the Advancement of Science (AAAS) Web site (4).

National Institutes of Health Grants and Contracts
It takes 8 to 10 months from the time a successful application is submitted to NIH until
it receives funding. During this time the application goes through a process of initial
administrative review by NIH staff, advisory peer review, final recommendation about
funding by the Council of an institute, and decision about funding by the institute
director (5). The peer review process, although laborious and somewhat capricious, is
reasonably fair and tends to enhance the quality of medical research in the same way
that journal reviewers enhance the quality of the medical literature.

The NIH offers many types of grants and contracts (6). The‘‘R’’ awards (such
as R01 and smaller R03 and R21 awards) support research projects conceived by the
investigator on a topic of his choosing or written in response to a publicized request
by one of the institutes at NIH. The ‘‘K’’ awards (such as K-08 or K-23 awards)
support training and development of the careers of junior or midlevel investigators. An
excellent way to begin a research career, K-awards generally provide substantial support
for the young investigator’s salary and modest support for research projects (1).

Institute-initiative proposals are designed to stimulate research in areas desig-
nated by NIH advisory committees, and take the form of either Requests for Proposals
(RFPs) or Requests for Applications (RFAs). Under an RFP, the investigator con-
tracts to perform certain research activities determined by the NIH. Under an RFA,
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the investigator conducts research in a topic area defined by the NIH, but the specific
research question and study plan are proposed by the investigator. RFPs use the
contract mechanism to reimburse the contractor for the costs involved in achieving
the planned objectives, and RFAs use the grant mechanism to support activities that
are more open-ended.

Grant applications are usually reviewed by one of many NIH ‘‘study sections.’’
Each of these has a specific focus and is composed of experts in those areas drawn
from institutions around the country. A list of the study sections and their current
membership is available on the NIH Web site (5), and many investigators use
this information to make sure their applications will be responsive to the particular
individuals who may provide their peer review. Proposals for K-awards are usually
reviewed by study sections comprised of experts in a general area of research sponsored
by the particular NIH Institute. Proposals sent in response to an RFA or RFP are
usually reviewed by ad hoc committees of peers that follow the same procedures as
the study sections in passing on the merits of a proposal.

When an investigator submits a grant application to the NIH, it is assigned by
the Center for Scientific Review (CSR) to a particular study section (Fig. 19.2). After
review and discussion, each member of the study section assigns a priority score of 1
to 3 for each of the applications judged to be in the upper half. (A few applications
are deferred to the next cycle 4 months later, pending clarification of points that
were unclear, and the rest are not reviewed.) This is done by secret ballot, and the
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FIGURE 19.2. Overview of NIH and foundation funding sources and mechanisms.
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average is computed and multiplied by 100 to yield a score from 100 (best) to 300
(worst). This score is compared with other scores from the study section to generate
a percentile rank.

The CSR also assigns each grant application to a particular institute at NIH. Each
institute then funds the grants assigned to it, in order of priority score (tempered by
an advisory council review and sometimes over-ridden by the institute director), until
the budget it has received from Congress is exhausted (Fig. 19.3). If an application is
of interest to more than one institute, the PI should request dual assignment and the
second institute may provide funds if the primary institute cannot, or the institutes
may share funding.

The investigator should decide in advance, with advice from senior colleagues, on
the outcome he prefers for the two key assignments that are made by the CSR—to
a study section and to an institute. Study sections vary a great deal not only in topic
area but also in the stringency and nature of their review, and there is a considerable
difference among institutes in the extent and quality of the competition. Although
the assignments are not fully controllable, the investigator can influence them by
(a) choosing words in the title and abstract that make it obvious what the best
assignment would be; (b) stating his preference in the cover letter for the application;
(c) asking the NIH scientist in charge of the study section of choice (the ‘‘scientific
review administrator’’) or the NIH scientist who will handle the grant at the institute
of choice for advice on how to steer the application.

Approach of the NIH

RO-1 grant
application

NIH Center for Scientific Review
assigns the RO-1 to:

(1) a study section, and
(2) an NIH institute

THE STUDY SECTION
DETERMINES PRIORITY

NIH institute uses this
priority to rank the application
among all those received from

various study sections

THE ADVISORY COUNCIL
REVIEWS THE PRIORITIES

AND THE DIRECTOR 
COMPLETES THE DECISION

Applications are funded
on order of priority until

the institute's funds
for the year are exhausted

The Board of Directors
determines which
grants are funded

THE STAFF OF
THE FOUNDATION

RECOMMENDS
WHETHER OR NOT TO

FUND THE APPLICATION

Grant
application

Typical approach
of foundations

FIGURE 19.3. NIH and foundation procedures for reviewing grant applications.
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After an application has been reviewed by the appropriate committee, the in-
vestigator receives written notification of the committee’s action. This summary
statement includes the score, percentile, and detailed comments and criticisms from
the committee members who reviewed the application.

Applications that are not funded, as is often the case for the first submission,
can be revised and submitted up to two more times. If the reviewers’ criticisms
suggest that the application can be made more acceptable to the committee, then
a thoughtfully revised version may have an excellent chance of obtaining funding
when it is resubmitted. An investigator need not automatically make all the changes
suggested by reviewers, but he should adopt revisions that will satisfy the reviewer’s
criticisms wherever possible and justify any decision not to do so. A good format for
the introduction of a resubmission is to quote each major criticism from the summary
statement and then state the corresponding response and changes in the proposal,
which should be earmarked in the text.

Grants from Foundations and Professional Societies
Private foundations (such as The Robert Wood Johnson Foundation) generally
restrict their funding to specific areas of interest. Some disease-based foundations
and professional societies (such as the American Heart Association and American
Cancer Society) also sponsor small research programs, many of which are designed
to support junior investigators. The total amount of research support is far smaller
than that provided by NIH, and most foundations have the goal of using this money
to fill the gaps, funding projects of merit that for one or another reason would not
be funded by NIH. A few foundations offer career development awards that usually
provide less financial support than NIH K-awards, and are focused on specific areas
such as quality of health care. The Foundation Center (7) maintains a searchable
directory of foundations, their Web sites, and contact information along with advice
about how to write effective proposals to foundations. Decisions about funding follow
procedures that vary from one institution to another but that usually respond rapidly
to relatively short proposals (Fig. 19.3). The decisions are often made by an executive
process rather than by peer review. Typically, the staff of the foundation makes a
recommendation that is ratified by a board of directors.

To determine whether a foundation might be interested in a particular proposal,
an investigator should consult with his senior mentors, and check foundation Web
sites. The Website will generally describe the goals and purposes of the foundation
and often list projects that have recently been funded. If it appears that the foundation
might be an appropriate source of support, it is best to contact the appropriate
staff member of the foundation to describe the project, determine the potential
interest, and get guidance about how to submit a proposal. Many foundations ask
that investigators send a short (three- to five-page) letter describing the background
and principal goals of the project, the qualifications of the investigators, and the
approximate duration and costs of the research. If the proposal is of sufficient interest,
the foundation may request a more detailed proposal.

Research Support from Industry
Corporations that make drugs and devices (referred to as ‘‘industry’’) are a major
source of funding, especially for randomized trials of new treatments. Large companies
generally accept applications for investigator-initiated research that may include small
pilot studies about the effects or mechanisms of action of a treatment, or epidemiologic
studies about conditions of interest to the company. They will often supply the drug
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and a matching placebo for an investigator’s research. Companies may provide small
grants to support educational programs in areas of their interest. However, the most
common form of industry support for clinical research is payment to enroll participants
into large trials that are designed, conducted and analyzed by the company.

Requests for support for research or educational programs, or to participate as
a site in a trial, generally begin by contacting the local or regional representative
for the company. If the company is interested in the topic, the investigator may be
asked to submit a relatively short application and complete forms about the request.
Companies often give preference to requests from ‘‘opinion leaders,’’ clinicians or
investigators who are well known and whose views may influence how other clinicians
prescribe drugs or use devices. Therefore, a young investigator seeking industry sup-
port should generally get the help of a well-known mentor in contacting the company
and submitting the application.

The contracts for support from profit-making companies can be a mixed experi-
ence. For participation in clinical trials, companies generally pay investigators a fixed
fee for each participant included in the trial and the trial closes enrollment when the
desired study-wide goal has been met. An investigator may enroll enough participants
to receive funding that exceeds his costs, in which case he may retain the surplus
as a long-term unrestricted account, but he will lose money if he recruits too few
participants to achieve the needed economy of scale.

Funding from industry, particularly from marketing departments, is often chan-
neled into topics and activities intended to increase the sales of the company’s
product (8). Investigators generally have more control over results of investigator-
initiated work funded by industry than when they are one of many investigators in
large industry-sponsored trials. Multicenter studies are generally analyzed by company
statisticians and often written by industry-funded medical writers.

Industry conducts research primarily to make profit from the sale of drugs and
devices. This motivation may influence employees of the company to put findings
about their products in the most favorable light. All medical research (regardless
of the source of support) is susceptible to various extrascientific influences. Because
society places a premium on a favorable result, negative results are often dull and hard
to publish even though we all recognize that a conclusive negative finding may be
as important as a conclusive positive one. Investigators can create some safeguards
against undue influence of financial and social pressures. It is important that contracts
with companies include clear terms providing investigators with meaningful access to
data. Investigators should seek involvement in publishing and presenting the results
of the studies provided that they are able to design, request, and carefully review
the analyses, write all, or key sections, of papers and produce their own slides for
presentation of results at meetings. Manuscripts and presentations should be reviewed
by publication committees, most of whose members are scientists involved in the trial
but not affiliated with the company.

One advantage of corporate support is that it is the only practical way to address
some research questions. There would be no other source of funds, for example,
for testing a new antibiotic that is not yet on the market. Another advantage is
the relative speed with which this source of funding can be acquired; decisions
about small investigator-initiated proposals are made within a few months and
drug companies are often eager to sign up qualified investigators to participate in
their multicenter clinical trials. Additionally, most pharmaceutical companies place
a high premium on maintaining a reputation for integrity (which enhances their
dealings with the vigilant U.S. Food and Drug Administration (FDA) and their
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stature with the public), and the research expertise, measurement instruments, sta-
tistical support and financial resources they provide can improve the quality of the
research.

Intramural Support
Universities often have local research funds for their own investigators that can
be discovered through the Dean’s office. Grants from these intramural funds are
generally limited to relatively small amounts, but they are usually available much
more quickly (weeks to months) and to a higher proportion of applicants than grants
from the NIH or private foundations. Intramural funds may be restricted to special
purposes, such as pilot studies that may lead to external funding, or the purchase of
equipment that will permit a study to be done by scientists whose salary is supported
by training funds. Such funds are often earmarked for junior faculty members or
fellows and provide a unique opportunity for a beginning investigator to acquire the
experience of leading a funded project.

SUMMARY

1. The protocol is the detailed written plan of the study. It is the scientific component
of a proposal for funding, which also contains administrative and supporting
information required by the funding agency.

2. An investigator who is working on a research protocol should begin by getting
advice from senior colleagues about the choice of funding agency. The next
steps are to study that agency’s written guidelines and to contact the scientific
administrator in the agency for advice.

3. The process of writing a proposal, which often takes much longer than expected,
includes organizing a team with the necessary expertise, designating a project
leader, establishing a timetable for written products, finding a model proposal,
outlining the proposal along agency guidelines, and reviewing progress at regular
meetings. The proposal should be reviewed by knowledgeable colleagues, revised
often, and polished at the end with attention to detail.

4. A good proposal requires not only a good research question, study plan, and
research team, but also a good presentation: the proposal must communicate
clearly and concisely, following a logical outline and indicating the advantages and
disadvantages of trade-offs in the study plan. The merits of the proposal should
stand out so that they will not be missed by a busy reviewer.

5. There are four main sources of support for clinical research:
a. The NIH and other governmental sources are the largest providers of support,

using a complex system of peer and administrative review that moves slowly
but encourages good science.

b. Foundations and societies are often interested in promising research questions
that escape NIH funding, and have review procedures that are quicker but more
parochial than those of NIH.

c. Manufacturers of drugs and devices are a very large source of support that
is usually channeled to company-run studies of new drugs and medical devices,
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but corporations value partnerships with leading scientists and support some
investigator-initiated research.

d. Intramural funds tend to have favorable funding rates for getting small
amounts of money quickly, and are suitable for pilot studies and beginning
investigators.
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Exercises

CHAPTER 1. GETTING STARTED: THE ANATOMY
AND PHYSIOLOGY OF CLINICAL RESEARCH

For each of the following summaries of studies, write a single sentence that specifies
the design and research question; the latter should include the main predictor and
outcome variables, and the population sampled. Think about the main inference that
can be drawn from the study: To what phenomena and which populations can the
findings be generalized? What are the potential errors in drawing and applying these
inferences?

1. Giving vitamin D to patients with vitamin D deficiency can improve strength,
but little is known about any influence it may have on the ordinary weakness
of aging. We selected 38 men 70 years of age and greater from a hypertension
treatment clinic and randomly assigned them to receive either vitamin D3 or
identical placebo. Muscle strength of the quadriceps, measured with an isokinetic
dynamometer after 6 months of treatment, was similar in the two groups.

2. A random sample of high school students was surveyed in the fall about frequency of
watching wrestling on television and fighting at school and on dates. The same sub-
jects were surveyed again in the spring. The adjusted odds of reporting fighting with
a date in the spring survey increased by 14% (OR = 1.14, 95% CI 1.06 − 1.22)
for each episode of wrestling the students reported having watched in the 2-week
period before the fall survey. (DuRant RH et al., Pediatrics 2006;118:e265–72)

3. To assess whether the sedative effects of psychotropic drugs might cause hip
fractures, we studied 1,021 women with hip fractures and an equal number
without hip fracture among elderly Medicaid enrollees. Women who had taken
short-acting tranquilizers had no increased risk of hip fracture, but those who had
taken tranquilizers with half-lives exceeding 24 hours did have an increased risk
(odds ratio, 1.8; 95% CI 1.3 to 2.4).

317
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4. Knowledge about AIDS was studied among 1,526 teen-aged boys and girls in
12 secondary schools in Zimbabwe. Ninety-three percent of the children thought
that it was an infection caused by having sexual relations, and 10% believed that it
could be contracted from toilet seats.

CHAPTER 2. CONCEIVING THE RESEARCH QUESTION

Consider the following research questions. First, write each question in a single
sentence that specifies a study design, predictor, outcome, and population. Then
discuss whether this research question and the design you have chosen meet the
FINER (Feasible, Interesting, Novel, Ethical, Relevant) criteria. Rewrite the question
and design until you have overcome any problems in meeting these criteria.

1. What is the relationship between depression and health?
2. Does eating red meat cause cancer?
3. Can relaxation exercises decrease anxiety during a mammogram?
4. Are there proteomic markers for coronary atherosclerosis?

CHAPTER 3. CHOOSING THE STUDY SUBJECTS:
SPECIFICATION, SAMPLING, AND RECRUITMENT

1. The research question is: ‘‘What are the factors that cause people to start smoking?’’
The investigator decides on a cross-sectional sample of high school students, invites
eleventh graders in her suburban high school to participate, and studies those who
volunteer. Discuss the suitability of this sample for the target population of interest.

2. Suppose that the investigator decides to avoid the bias associated with choosing
volunteers by designing a 25% random sample of the entire eleventh grade, and
that the actual sample turns out to be 70% female. If it is known that roughly
equal numbers of boys and girls are enrolled in the school, then the disproportion
in the sex distribution represents an error in drawing the sample. Could this have
occurred through random error, systematic error, or both? Explain your answer.

3. The research question is, ‘‘What is the prevalence of alcohol and drug use among
persons who attend rock concerts?’’ Classify the following sampling schemes for
selecting individuals to fill out a brief questionnaire, commenting on feasibility and
whether the results will be generalizable to all people who attend rock concerts.
a. As each patron entered the theater, she is asked to throw a die. All patrons who

throw a 6 are selected.
b. As each patron entered the theater, she is asked to throw a die. Men who throw

a 1 and women who throw an even number are selected.
c. Tickets to the concert are known to be numbered serially. Each patron whose

ticket number ends in 1 is selected.
d. After all the patrons are seated, five rows are chosen at random by drawing

from a shuffled set of cards that has one card for each theater row. All patrons
in those five rows are selected.

e. The first 27 patrons who enter the theater are selected.
f. Some tickets were sold by mail and some were sold at the box office just before

the performance. Whenever there were three or more people waiting in line to



Exercises 319

buy tickets at the box office, the last person in line (who had the most time
available) was selected.

g. When patrons began to leave after the performance, those who seemed willing
and able to answer questions were selected.

CHAPTER 4. PLANNING THE MEASUREMENTS:
PRECISION AND ACCURACY

1. Classify the following variables as dichotomous, nominal, ordinal, continuous, or
ordered discrete. Could any of them be modified to increase power, and how?
a. Sex
b. Age
c. Education (high school degree/no degree)
d. Education (highest year of schooling)
e. History of heart attack (present/absent)
f. Number of alcohol drinks per day
g. Depression (none, mild, moderate, severe)
h. Percent occlusion of coronary arteries
i. Hair color
j. Body weight (obese/not obese)

2. The research question is, ‘‘Does body weight at age 1 year predict the number of
drop-in clinic visits during the following year?’’ The investigator plans a prospective
cohort study, measuring body weight using an infant scale. Several problems are
noted during pretesting. Are these problems due to lack of accuracy, lack of
precision, or both? Is the problem mainly due to observer, subject, or instrument
variability, and what could be done about it?
a. During calibration of the scale, a 10-pound reference weight weighs

10.5 pounds.
b. The scale seems to give variable results; weighing the 10-pound reference

weight 20 times gives a mean of 10.01 ± 1.00 (standard deviation) pounds.
c. Some babies are scared and when they try to climb off the scale the observer

holds them on it to complete the measurement.
d. Some babies are ‘‘squirmy,’’ and the pointer on the scale swings up and down

wildly.
e. Some of the babies arrive for the examination immediately after being fed,

whereas others are hungry; some of the babies have wet diapers.

CHAPTER 5. GETTING READY TO ESTIMATE SAMPLE
SIZE: HYPOTHESES AND UNDERLYING PRINCIPLES

1. Define the concepts in boldface.
An investigator is interested in designing a study with sufficient sample size to

determine whether body mass index is associated with stomach cancer in women
between 50 and 75 years of age. She is planning a case–control study with equal
numbers of cases and controls. The null hypothesis is that there is no difference
in mean body mass index between cases of stomach cancer and controls; she has
chosen an alternative hypothesis with two sides. She would like to have a power
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of 0.80, at a level of statistical significance (α) of 0.05, to be able to detect
an effect size of a difference in body mass index of 1 kg/m2 between cases and
controls. Review of the literature indicates that the variability of body mass index
among women is a standard deviation of 2.5 kg/m2 cm.

2. Which of the following is likely to be an example of a Type I error? A Type II
error? Neither?
a. A randomized trial finds that subjects treated with a new analgesic medication

had greater mean declines in their pain scores during a study than did those
treated with placebo (P = 0.03).

b. A 10-year study reports that 110 subjects who smoke do not have a greater
incidence of lung cancer than 294 non-smokers (P = 0.31).

c. An investigator concludes that ‘‘Our study is the first to find that use of alcohol
reduces the risk of diabetes in men less than 50 years of age (P < 0.05).’’

CHAPTER 6. ESTIMATING SAMPLE SIZE AND POWER:
APPLICATIONS AND EXAMPLES

1. Review exercise 1 of Chapter 5. Determine how many cases of stomach cancer
would be required for the study. What if the investigator wanted a power of 0.90?
Or a level of statistical significance of 0.01?

Extra credit: Suppose the investigator only had access to 60 cases. What could
she do?

2. Muscle strength declines with advancing age. Preliminary evidence suggests that
part of this loss of muscle strength might be due to progressive deficiency of dehy-
droepiandrosterone (DHEA). Investigators plan a randomized trial to administer
DHEA or identical placebo for 6 months to elderly subjects, and then measure
muscle strength. Previous studies have reported a mean grip strength in elderly
persons of 20 kg with a standard deviation of 8 kg. Assuming α(two-sided) = 0.05
and β = 0.10, how many subjects would be required to demonstrate a 10% or
greater difference between strength in the treated and placebo groups? How many
subjects would be needed if β = 0.20?

3. In exercise 2, sample size calculations indicated more subjects were needed than
can be enrolled. A colleague points out that elderly people have great differences
in grip strength. This accounts for much of the variability in the strength measured
after treatment and might be obscuring the treatment effect. She suggests that you
measure strength at baseline and again after treatment, using the change in strength
as the outcome variable. A small pilot study shows that the standard deviation of
the change in strength during a 6-month period is only 2 kg. How many subjects
would be required per group using this design, assuming α(two-sided) = 0.05 and
β = 0.10?

4. An investigator suspects that left-handedness is more common in dyslexic than
in nondyslexic third graders. Previous studies indicated that about 10% of people
are left-handed and that dyslexia is uncommon. A case–control study is planned
that will select all the dyslexic students in a school district as cases, with an equal
number of nondyslexic students randomly selected as controls. What sample size
would be required to show that the odds ratio for dyslexia is 2.0 among left-handed
students compared with right-handed students? Assume α = 0.05 (two-sided) and
β = 0.20.



Exercises 321

5. An investigator seeks to determine the mean IQ of medical students in her
institution, with a 99% CI of ± 3 points. A small pilot study suggests that IQ
scores among medical students range from about 130 to 170. Approximately what
sample size is needed?

CHAPTER 7. DESIGNING A COHORT STUDY

1. The research question is, ‘‘Does vitamin B12 deficiency cause hip fractures in the
elderly?’’
a. Briefly outline a study plan to address this research question with a prospective

cohort study.
b. An alternative approach would be to compare evidence of vitamin B12 deficiency

in women who have had previous hip fracture with that in women who have
not. Compared with this ‘‘case–control’’ approach, list at least one advantage
and one disadvantage of your prospective cohort study. (If you like, you can
come back to this question after you have read Chapter 8.)

c. Could the cohort study be designed as a retrospective study, and how would
this affect these advantages or disadvantages?

CHAPTER 8. DESIGNING CROSS-SECTIONAL
AND CASE–CONTROL STUDIES

1. The research question is, ‘‘How much does a family history of ovarian cancer
increase the risk for ovarian cancer?’’ The investigator plans a case–control study
to answer this question.
a. How should she pick the cases?
b. How should she pick the controls?
c. Comment on potential sources of bias in the sampling of cases and controls.
d. How would she measure ‘‘family history of ovarian cancer’’ as the predictor

variable of interest? Comment on the sources of bias in this measurement.
e. What measure of association would she use, and what test of statistical signifi-

cance?
f. Do you think the case–control method is an appropriate approach to this

research question? Discuss the advantages and disadvantages of the case–control
design relative to other possibilities for this research question.

2. The research question is, ‘‘Does maternal height or weight predict infant birth
weight?’’ During a 12-month period an investigator assembles data on consecutive
newborns in a large maternity hospital. The study is limited to term newborns
as defined by delivery 38 to 42 weeks after the mother’s last menstrual period.
In the maternity ward, the investigator measures each infant’s birth weight and
the mother’s height and weight. Based on the data obtained, the investigator
concludes that birth weight is strongly dependent on both maternal height and
weight.
a. What kind of study is this?
b. Explain why you agree or disagree with the investigator’s conclusions?

3. The investigator wants to investigate the relationship between playing video games
involving car racing and the risk of being involved in a real car crash (as the driver).
She has two research questions, one that addresses the long-term effects of habitual
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use of these games, and the other that tests whether use of such games in the hour
immediately preceding driving increases short-term risk. What are some designs
she might consider?

CHAPTER 9. ENHANCING CAUSAL INFERENCE IN
OBSERVATIONAL STUDIES

(This is out favorite exercise)

1. The investigator undertakes a case–control study to address the research question,
‘‘Does eating more fruits and vegetables reduce the risk of coronary heart disease
(CHD) in the elderly?’’ Suppose that her study shows that people in the control
group report a higher intake of fruits and vegetables than people with CHD.

What are the possible explanations for this inverse association between intake
of fruits and vegetables and CHD? How could each of these possibilities be altered
in the design phase of the study? How could they be addressed in the analysis phase?

Give special attention to the possibility that the association between eating
fruits and vegetables and CHD may be confounded by exercise (if people who eat
more fruits and vegetables also exercise more, and this is the cause of their lower
CHD rates). What approaches could you use to cope with exercise as a possible
confounder, and what are the advantages and disadvantages of each plan?

CHAPTER 10. DESIGNING A RANDOMIZED BLINDED
TRIAL

1. A herbal extract, huperzine, has been used in China as a remedy for dementia and
preliminary studies in animals and humans have been promising. The investigator
would like to test whether this new treatment might decrease the progression of
Alzheimer’s disease. Studies have found that plasma level of Abeta (1–40) is a
biomarker for Alzheimer’s disease: elevated levels are associated with a significantly
increased risk of developing dementia and the levels of Abeta (1–40) increase with
the progression of dementia. In planning a trial to test the efficacy of huperzine
for prevention of dementia in elderly patients with mild cognitive impairment,
the investigator considers two potential outcome measurements: change in Abeta
(1–40) levels or incidence of a clinical diagnosis of dementia.
a. List one advantage and one disadvantage of using Abeta (1–40) as the primary

outcome for your trial.
b. List one advantage and one disadvantage of using diagnosis of dementia as the

primary outcome for the trial.
2. A large (>200 person per arm) trial of huperzine is being planned. The primary

aim is to test whether this herbal extract decreases the incidence of a clinical
diagnosis of dementia among elderly men and women who have mild cognitive
impairment.
a. Huperzine is expected to occasionally cause gastrointestinal symptoms, includ-

ing diarrhea, nausea, and vomiting. Describe a plan for assessing adverse effects
of this new treatment on symptoms or diseases besides cognitive impairment.

b. Describe a general plan for baseline data collection: what types of information
should be collected?
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c. People who carry an Apoε4 allele have an increased risk of dementia. List one
reason in favor and one against using stratified blocked randomization instead
of simple randomization to assure a balance of people with the Apoε4 genotype
in the treatment and control group.

CHAPTER 11. ALTERNATIVE TRIAL DESIGNS
AND IMPLEMENTATION ISSUES

Topical finasteride is moderately effective in treating male pattern baldness and
is approved by the U.S. Food and Drug Administration (FDA) for treating this
condition. Statins have been found to increase hair growth in rodents and they act by
a different pathway than does finasteride. Imagine that a start-up company wants to
obtain FDA approval for marketing a new topical statin (HairStat) for the treatment
of male pattern baldness.

1. Describe a phase I trial of HairStat for male pattern baldness. What would be the
treatment group(s)? What type of outcomes?

2. The company wants to compare the efficacy of HairStat to finasteride. List at least
one advantage and disadvantage the following approaches to testing the relative
effectiveness of finasteride and the topical statin.
a. Randomize bald men to either finasteride or topical statin.
b. In a factorial design, randomly assign men to finasteride and statin, finasteride

and statin-placebo, finasteride-placebo and statin, and double placebo.
3. Imagine that the company plans a 1-year placebo-controlled study of HairStat for

treatment of baldness. The outcome is change in rating of the amount of hair
in photographs of the bald region that is undergoing treatment. Follow-up visits
(with photographs) are scheduled every 3 months. Outline a plan—with at least
2 elements—for encouraging compliance with the study and return for visits to
assess the outcome.

4. Twenty percent of the men in the HairStat versus placebo trial did not return for
the 3-month follow-up visit and 40% stopped by 1 year. Some stopped because
a rash developed on their scalp. List one disadvantage and one advantage of
analyzing the effect of treatment on hair growth by a strict intention-to-treat
approach.

5. In the intention-to-treat analysis, HairStat increased hair growth (rated from
comparison of photographs, masked to treatment) by about 20% (P = 0.06).
Subsequent analyses showed that hair growth was 45% greater in men younger
than age 40 than in older men (P = 0.01 in that subgroup). What are the problems
with the company’s conclusion that HairStat is effective for treating baldness in
men younger than age 40?

CHAPTER 12. DESIGNING STUDIES OF MEDICAL TESTS

1. You are interested in studying the erythrocyte sedimentation rate (ESR) as a test
for pelvic inflammatory disease (PID) in women with abdominal pain.
a. To do this, you will need to assemble groups of women who do and do not

have PID. What would be the best way to sample these women?
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b. How might the results be biased if you used final diagnosis of PID as the gold
standard and those assigning that diagnosis were aware of the ESR?

c. You find that the sensitivity of an ESR of at least 20 mm/hr is 90%, but the
specificity is only 50%. On the other hand, the sensitivity of an ESR of at least
50 mm/hr is only 75%, but the specificity is 85%. How should you present
these results?

2. You are interested in studying the diagnostic yield of computed tomography (CT)
head scans in children presenting to the emergency department (ED) with head
injuries. You use a database in the radiology department to find reports of all CT
scans done on patients less than 18 years old and ordered from the ED for head
trauma. You then review the ED records of all those who had an abnormal CT
scan to determine whether the abnormality could have been predicted from the
physical examination.
a. Out of 200 scans, 10 show intracranial injuries. However, you determine that

in 8 of the 10, there had been either a focal neurological examination or altered
mental status. Since only 2 patients had abnormal scans that could not have
been predicted from the physical examination, you conclude that the yield of
‘‘unexpected’’ intracranial injuries is only 2 in 200 (1%) in this setting. What is
wrong with that conclusion?

b. What is wrong with using intracranial injuries as the outcome variable for this
diagnostic yield study?

c. What would be some advantages of studying the effects of the test on medical
decision making, rather than just the diagnostic yield?

3. You now wish to study the sensitivity and specificity of focal neurological findings
to predict intracranial injuries. (Because of the small sample size of intracranial
injuries, you increase the sample size by extending the study to several other EDs.)
One problem you have studying focal neurological findings is that children who
have them are much more likely to get a CT scan than children who do not. Explain
how and why this will affect the sensitivity and specificity of such findings if:
a. Only children who had a CT scan are included in the study.
b. Eligible children with head injuries who did not have a CT scan are included,

and assumed not to have had an intracranial injury if they recovered without
neurosurgical intervention.

CHAPTER 13. UTILIZING EXISTING DATABASES

1. The research question is: ‘‘Do Latinos in the United States have higher rates of
gallbladder disease than whites, African Americans, or Asian Americans?’’ What
existing databases might enable you to determine race-, age- and sex-specific rates
of gallbladder disease at low cost in time and money?

2. A research fellow became interested in the question of whether mild or moderate
renal dysfunction increases risk for CHD events and death. Because of the expense
and difficulty of conducting a study to generate primary data, he searched for an
existing database that contained the variables he needed to answer his research
question. He found that the cardiovascular health study (CHS), a large, NIH-
funded multicenter cohort study of predictors of cardiovascular disease in older
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men and women provided all of the variables required for his planned analysis. His
mentor was able to introduce him to one of the key investigators in CHS who
helped him prepare and submit a proposal for analyses that was approved by the
CHS Steering Committee.
a. What are the advantages of this approach to study this question?
b. What are the disadvantages?

3. An investigator is interested in whether the effects of treatment with post-
menopausal estrogen or selective estrogen receptor modulators (SERMs) vary
depending on endogenous estrogen levels. How might this investigator answer
this question using an ancillary study?

CHAPTER 14. ADDRESSING ETHICAL ISSUES

1. The research question is to identify genes that are associated with an increased risk
of developing type 2 diabetes mellitus. The investigator finds that frozen blood
samples and clinical data are available from a large prospective cohort study on
risk factors for coronary artery disease. That study collected baseline data on diet,
exercise, clinical characteristics, and measurements of cholesterol and hemoglobin
A1c. Follow-up data are available on coronary endpoints and the development of
diabetes. The proposed study will carry out DNA sequencing on participants; no
new blood samples are required.
a. Can the proposed study be done under the original consent for the cohort

study?
b. If the original consent did not provide permission for such a study, how can the

current investigators carry out their proposed study?
c. When designing new studies that collect blood samples, how can investigators

plan for future studies to use their data and samples?
2. The investigator plans a phase III randomized controlled trial of a new cancer

drug that has shown promise in treating colon cancer. In order to reduce sample
size, he would like to carry out a placebo-controlled trial rather than comparing it
to current therapy.
a. What are the ethical concerns about a placebo control in this situation?
b. Is it possible to carry out a placebo-controlled study in an ethically acceptable

manner?
3. The investigator plans a preparedness study for a future HIV vaccine trial. The

goals are to determine (a) if it is possible to recruit a cohort of participants who
have a high seroconversion rate despite state-of-the-art HIV prevention counseling
and (b) if the follow-up rate in the cohort will be sufficiently high to carry out
a vaccine trial. Participants will be persons at increased risk for HIV, including
injection drug users, persons who trade sex for money, and other persons with
multiple sexual partners. Most participants will have low literacy and poor health
literacy. The study will be an observational cohort study, following participants for
2 years to determine sero-incidence rates.
a. What do the federal regulations require be disclosed to participants as part of

informed consent?
b. What steps can be taken to ensure that consent is truly informed in this context?
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c. What is the investigators’ responsibility during this observational study to reduce
the risk HIV in these high-risk participants?

CHAPTER 15. DESIGNING QUESTIONNAIRES
AND INTERVIEWS

1. As part of a study of alcohol and muscle strength, an investigator plans to use
the following item for a self-response questionnaire to determine current use of
alcohol:

‘‘How many drinks of beer, wine, or liquor do you drink each day?’’

0
1–2
3–4
5–6
7–8

Briefly describe at least two problems with this item.
2. Write a short series of questions for a self-response questionnaire that will better

assess current alcohol use.
3. Comment on the advantages and disadvantages of a self-response questionnaire

versus a structured interview to assess risky sexual behavior.

CHAPTER 16. DATA MANAGEMENT

1. Refer to the first six items on the sample questionnaire about smoking in Appendix
15.1. You have responses for three study subjects:

Subject ID Description of Smoking History

1001 Started smoking at age 17 and has continued to
smoke an average of 30 cigarettes/day ever since

1002 Started smoking at age 21 and smoked 20
cigarettes/day until quitting 3 years ago at age 45

1003 Smoked a few cigarettes (<100) in high school

Create a data table containing the responses of these subjects to the first six ques-
tions in Appendix 15.1. The table should have three rows (one for each subject)
and seven columns (one for Subject ID, and one each for the six questions).

2. The PHTSE (Pre-Hospital Treatment of Status Epilepticus) Study (1,2) was a
randomized blinded trial of lorazepam, diazepam, or placebo in the treatment of
prehospital status epilepticus. The primary endpoint was termination of convulsions
by hospital arrival. To enroll patients, paramedics contacted base hospital physicians
by radio. The following are base-hospital physician data collection forms for two
enrolled patients:
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Base Hospital Physician Data Collection Form

PHTSE Subject ID :

Study Drug Administration

Study Drug Kit #:

Date and Time of Administration :

Transport Evaluation

Seizure Stopped

Time Seizure Stopped

Final (“End-Of-Run”) Assessment

Time of Arrival at Receiving Hospital ED:

On arrival at the receiving hospital:

Seizure activity (active tonic/clonic convulsions) continued1

0[   ]

[   ]

1

2

3

4

5

[      ]

[      ]

[      ]

[      ]

[      ]

Seizure activity (active tonic/clonic convulsions) stopped

Verbal GCS

No Verbal Response

Incomprehensible Speech

Inappropriate Speech

Confused Speech

Oriented

PAGE ON-CALL PHTSE STUDY PERSONNEL !!

(Use 24 hour clock)

(Use 24 hour clock)

(Use 24 hour clock)
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Base Hospital Physician Data Collection Form

PHTSE Subject ID :

Study Drug Administration

Study Drug Kit #:

Date and Time of Administration :

Transport Evaluation

Seizure Stopped

Time Seizure Stopped

Time of Arrival at Receiving Hospital ED :

On arrival at the receiving hospital:

Seizare activity (active tonic/clonic convulsions) continued

Seizare activity (active tonic/clonic convulsions) stopped

Verbal GCS

No Verbal Response

Incomprehensible Speech

Inappropriate Speech

Confused Speech

Oriented

PAGE ON-CALL PHTSE STUDY PERSONNEL !!

Final (“End-Of-Run”) Assessment

(Use 24 hour clock)

(Use 24 hour clock)

(Use 24 hour clock)

1

1

[   ]

0[   ]

[     ]

2[     ]

3[     ]

4[     ]

5[     ]
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a. Display the data from these two data collection forms in a two-row data table.
b. Create a nine-field data dictionary for the data table in (a).
c. The paper data collection forms were completed by busy base hospital physicians

who were called from the emergency department to a radio room. What are the
advantages and disadvantages of using an on-screen computer form instead of
a paper form? If you designed the study, which would you use?

3. The data collection forms in exercise 2 include a question about whether seizure
activity continued on arrival at the receiving hospital (which was the primary
outcome of the study). This data item was given the field name HospArrSzAct
and was coded 1 for yes (seizure activity continued) and 0 for no (seizure activity
stopped).

Interpret the average values for HospArrSzAct as displayed below:

HospArrSzAct
(1 = Yes, seizure continued; 0 = No, seizure stopped)
N Average

Lorazepam 66 0.409
Diazepam 68 0.574
Placebo 71 0.789

REFERENCES

1. Lowenstein DH, Alldredge BK, Allen F, et al. The prehospital treatment of status epilepticus
(PHTSE) study: design and methodology. Control Clin Trials 2001;22(3): 290–309.

2. Alldredge BK, Gelb AM, Isaacs SM, et al. A comparison of lorazepam, diazepam, and
placebo for the treatment of out-of-hospital status epilepticus. N Engl J Med 2001;345(9):
631–637.

CHAPTER 17. IMPLEMENTING THE STUDY
AND QUALITY CONTROL

1. An investigator studied the research question, ‘‘What are the predictors of death
following hospitalization for myocardial infarction?’’ Research assistants collected
detailed data from charts and conducted extensive interviews with 120 hospitalized
patients followed over the course of 1 year. About 15% of the patients died during
the follow-up period. When data collection was complete, one of the research
assistants entered the data into a computer using a spreadsheet. When the data
entry was complete, the investigator began to run analyses of the data. To his
chagrin he discovered that about 10% to 20% of some predictor variables were
missing, and others did not seem to make sense. Only 57% of the sample had been
seen at the 1-year follow-up, now more than a year overdue for some subjects.
You are called in to consult on the project.
a. What can the investigator do now to improve the quality of his data?
b. Briefly describe at least three ways that he could reduce missing values and

errors in his next study.
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CHAPTER 18. COMMUNITY AND INTERNATIONAL
STUDIES

1. You wish to study the characteristics and clinical course of patients with abdominal
pain of unclear etiology. You plan to enroll patients with abdominal pain in whom
no specific cause can be identified after a standard battery of tests. There are two
options for recruiting study subjects: (a) the G.I. clinic at your university medical
center or (b) a local network of community clinics. What are the advantages and
disadvantages of each approach?

2. You have been assigned to work with the Chinese Ministry of Health in a new
program to prevent smoking-related diseases in China. Of the following research
questions, to what degree does each require local research as opposed to research
done elsewhere?
a. What is the prevalence and distribution of cigarette smoking?
b. What diseases are caused by smoking?
c. What strategies are most effective for encouraging people to quit smoking?

CHAPTER 19. WRITING AND FUNDING A RESEARCH
PROPOSAL

1. Search the NIH website (http://grants.nih.gov/grants/oer.htm) to find at least
three types of investigator-initiated R-series grant awards.

2. Search the web for foundations that might be interested in the area of your
research. List at least two.

3. A young investigator in physical therapy has interest and expertise in muscle
physiology. A pharmaceutical company is testing a treatment that may increase the
formation of skeletal muscle and invites him to recruit patients into a multicenter
trial of the effect of the treatment on recovery from leg and hip fractures. The
investigator would be paid a fee for each participant he enrolls in the trial. List
at least two issues that the investigator should consider before contracting to
participate in the trial.

http://grants.nih.gov/grants/oer.htm
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CHAPTER 1

1. This is a randomized blinded trial of whether treatment with vitamin D increases
leg muscle strength in hypertensive men 70 years of age or greater.

2. This is a cohort study to examine whether watching wrestling on television predicts
subsequent fighting on dates among high school students.

3. This is a case–control study of whether short- and long-acting psychotropic medi-
cations are associated with an increased risk for hip fracture among elderly women.

4. This is a cross-sectional descriptive study of the state of knowledge, among
schoolchildren in Zimbabwe, about risk factors for AIDS.
(We leave it to the reader to develop the inferences that can be drawn from these
studies)

CHAPTER 2

1. One possible answer is ‘‘a cross-sectional study to determine whether depression
is associated with health status among people in their early 20s.’’ The possibility
that ‘‘depression’’ and ‘‘health status’’ are related is Interesting and Relevant, and
the question as stated is too vague to be able to judge whether it meets the other
FINER criteria (Feasible, Novel and Ethical). How will depression and health status
be measured, and in what population? Also it will be difficult to establish causality
in a cross-sectional design—does depression lead to worse health or vice versa? A
more specific design that could measure up to the FINER criteria (depending on
how it is fleshed in) might be, ‘‘A cohort study to determine whether depression
among college freshmen, assessed by the CES-D questionnaire predicts their health
status as seniors, measured by the Rand General Health Questionnaire.’’

2. This is an Interesting research question that also needs to be made more specific.
What is meant by red meat—does veal qualify? Any cancer, including skin cancer?

331
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The research question and design could be rewritten: ‘‘A case–control study
of whether the amount of beef consumed by elderly people is associated with
occurrence of breast cancer over the next several decades?’’ This is less vague and
certainly Ethical, but it may not be Feasible to produce a scientifically rigorous
answer. The case–control design is suitable for cancer etiology, but subjects may
have difficulty remembering how many servings of red meat they ate during
different periods in their lifetime. The research question is not Novel—there have
already been several studies of the association of eating meat and breast cancer,
generally suggesting a small increase in risk among women who eat meat. Better
data on meat consumption could be obtained with a prospective cohort study, but
the low annual incidence of breast cancer would require a very large number of
subjects followed for many years.

3. ‘‘A randomized clinical trial to test whether relaxation exercises decrease anxiety
of middle-aged women during a mammogram’’ is a study that could be Feasible,
Novel and Ethical, but this question may not be Interesting or Relevant enough
to answer. Many women are anxious about having a mammogram and therefore
delay or avoid the procedure. It is not the discomfort of the procedure itself, but
the fear that a breast cancer will be diagnosed that creates anxiety. The relaxation
exercise is unlikely to reduce this fear of finding cancer. In addition, such relaxation
training will not be useful in getting more women to have a mammogram, because
the intervention occurs only after the woman has already made the decision to
have the test.

4. ‘‘A cross-sectional study to discover proteomic markers that help to distinguish
coronary insufficiency from noncardiac causes in middle-aged men seen in the
emergency room for chest pain.’’ This study is Interesting, Novel and Ethical, and
it is highly Relevant—better tests are needed to identify patients with substantial
atherosclerotic plaque before undertaking expensive and invasive tests to explore
their candidacy for coronary artery interventions. As to Feasibility, the study
would not be a problem to carry out from a clinical standpoint, but the technical
approaches to identifying individual proteomic markers among the thousands of
proteins that circulate in the blood stream remain challenging.

CHAPTER 3

1. The target population (all eleventh graders, or more broadly, all high school
students) may not be well suited to the research question if the antecedents of
smoking take place at an earlier age—it might be better to study students in
junior high. Also, the study sample (students at this one high school) may not
adequately represent the target population—the causes of smoking differ in various
cultural settings, and the investigator might do better to draw her sample from
several high schools randomly selected from the whole region. Most important,
the sampling design (calling for volunteers) is likely to attract students who are
not representative of the accessible population in their smoking behavior.

2. The unrepresentative sample could have resulted from random error, but this would
have been unlikely unless it was a very small sample. If the sample numbered ten,
a 7 : 3 disproportion would occur fairly often as a result of chance; in fact, the
probability of finding at least seven heads in ten tosses of a coin is 17% (plus
another 17% chance of finding seven tails). But if the sample size were 100, the
probability of finding at least 70 heads is less than 0.01%. This illustrates the fact
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that the investigator can estimate the magnitude of the random component of
sampling error once the sample has been acquired and that she can reduce it to
any desired level by enlarging the sample size.

The unrepresentative sample could also have resulted from systematic er-
ror. The large proportion of females could have been due to different rates of
participation among boys and girls. The strategies for preventing nonresponse
bias include the spectrum of techniques for enhancing recruitment discussed in
Chapter 3. The large proportion of females could also represent a technical mistake
in enumerating or selecting the names to be sampled. The strategies for preventing
mistakes include the appropriate use of pretesting and quality control procedures
(Chapter 17).

3. a. Random sample (probability)
b. Stratified random sample (probability), with a threefold over-sampling of

women, perhaps because the investigator anticipated that few women would
attend the concert

c. Systematic sample (nonprobability)
d. Cluster sample (probability)
e. Consecutive sample (nonprobability)
f. Convenience sample (nonprobability)
g. Judgmental sample (nonprobability)

CHAPTER 4

1. a. Dichotomous
b. Continuous
c. Dichotomous
d. Ordered discrete
e. Dichotomous
f. Ordered discrete
g. Ordinal
h. Continuous
i. Nominal
j. Dichotomous
Power is increased by using an outcome variable that contains ordered information;
that is, (d) has more power than (c). As to (j), use of body weight as a continuous
outcome would offer far more power (carry more information) than presence or
absence of obesity.

2. a. This is a problem with accuracy. It could be due to an observer not visualizing
the reading correctly (a second observer could check the result), but more likely
the scale needs to be adjusted.

b. This is a problem with precision. The excessive variability could be an observer
error, but more likely the scale needs refurbishing.

c. This situation can reduce both accuracy and precision. Accuracy will suffer
because the observer’s hold on the baby will likely alter the observed weight;
depending on technique, this might tend to consistently increase the observed
weight or to consistently decrease it. This problem with the subjects might be
solved by having the mother spend some time calming the baby; an alternative
would be to weigh the parent with and without the baby, and take the difference.
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d. This is primarily a problem with precision, because the pointer on the scale will
vary around the true weight (if the scale is accurate). The problem is with the
subjects and has the same solution as in (c).

e. This is mainly a problem with precision, since the babies’ weights will vary,
depending on whether or not they ate and wet their diapers before the
examination. This problem of subject variability could be reduced by giving the
mothers instructions not to feed the babies for 3 hours before the examination,
and weighing all babies naked.

CHAPTER 5

1. Sample size = the projected number of subjects in a study that are required for
the investigator to be able to detect a given effect size (at the specified levels of α

and β)
Null hypothesis = a statement of the research hypothesis that indicates that

there is no difference between the groups being compared
Alternative hypothesis = a statement of the research hypothesis that indicates

that there is a difference between the groups being compared
Power = the likelihood of detecting a statistically significant difference be-

tween the groups being compared (with a given sample size, at a given level of
statistical significance) if the real difference in the population equals the effect size

Level of statistical significance = the preset chance of falsely rejecting the null
hypothesis

Effect size = the minimum size of the difference in the two groups being
compared that the investigator wishes to detect

2. a. Neither. This is a statistically significant result, and there is nothing to suggest
that it represents a Type I error.

b. The sample size was small and very few subjects would have developed lung
cancer during the study. These negative results are almost certainly due to
a Type II error, especially given extensive evidence from other studies that
smoking causes lung cancer.

c. There is no prior epidemiologic or pathophysiologic reason to believe that
alcohol use reduces the risk of developing diabetes; this result is likely due to a
Type I error.

CHAPTER 6

1. H0: There is no difference in the body mass index of stomach cancer cases and
controls.
HA (two-sided): There is a difference in the body mass index of stomach cancer
cases and controls. Body mass index is a continuous variable and case–control is
dichotomous, so a t-test should be used.

Effect size = 1 kg/m2

Standard deviation = 2.5 kg/m2

E/S = 0.4
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From Appendix 6.A,

If α = 0.05, β = 0.20, then 100 subjects are needed per group.

If α = 0.05, β = 0.10, then 133 subjects are needed per group.

If α = 0.01, β = 0.20, then 148 subjects are needed per group.

Extra credit: If the investigator only had access to 60 cases, only one of the
following strategies for increasing power will help:
a. Use a continuous variable—body mass index is already being measured as a

continuous variable.
b. Use a more precise variable—both weight and height are precise variables,

and the standard deviation of body mass index is composed almost entirely of
between-individual variation, which cannot be reduced.

c. Use paired measurements—not applicable; ‘‘change’’ in body mass index is not
relevant in this situation

d. Use a more common outcome—not applicable.
e. Use unequal group sizes—the n of controls can be increased, as it is easy to

find subjects without stomach cancer. For example, if the number of controls
can be increased fourfold to 240, one can use the approximation formula on
page 80:

n′ = ([c + 1] ÷ 2c) × n

where n′ represents the ‘‘new’’ number of cases, c represents the control-to-case
ratio (in this example, 4), and n represents the ‘‘old’’ number of cases (assuming
a control per case). In this example,

n′ = ([4 + 1] ÷ 8) × 100 = (5/8) × 100 = 63,

which is just about the number of cases that are available. Therefore, a study
with 60 cases and 240 controls will have similar power as one with 100 cases
and 100 controls.

2. H0: There is no difference in mean strength between the DHEA-treated and
placebo-treated groups.
HA: There is a difference in mean strength between the DHEA-treated and
placebo-treated groups.

α = 0.05 (two-sided); β = 0.10

Test = t test

Effect size = 10% × 20 kg = 2 kg

Standard deviation = 8 kg

The standardized effect size (E/S) is 0.25 (2 kg/8 kg). Looking at Appendix
6.A, go down the left column to 0.25, then across to the fifth column from the
left, where α(two-sided) = 0.05 and β = 0.10. Approximately 338 subjects per
group would be needed. If β = 0.20, then the sample size is 253 per group.

3. H0: There is no difference in the mean change in strength between the DHEA-
treated and placebo-treated groups.
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HA: There is a difference in mean change in strength between the DHEA-treated
and placebo-treated groups.

α = 0.05 (two-sided); β = 0.10
Test = t test
Effect size = 10% × 20 kg = 2 kg
Standard deviation = 2 kg

The standardized effect size (E/S) is 1.0 (2 kg/2 kg). Looking at Appendix
6.A, go down the left column to 1.0 then across to the fifth column from the left
where α(two-sided) = 0.05 and β = 0.10. Approximately 23 subjects per group
would be needed.

4. H0: There is no difference in frequency of left-handedness in dyslexic and
nondyslexic students.
HA: There is a difference in frequency of left-handedness in dyslexic and nondyslexic
students.

α = 0.05 (two-sided); β = 0.20
Test = chi-squared test (both variables are dichotomous)
Effect size = odds ratio of 2.0

Given that the proportion of nondyslexic students who are left-handed (P2)
is about 0.1, the investigator wants to be able to detect a proportion of dyslexic
students who are left-handed (P1) that will yield an odds ratio of 2.0. The sample
size estimate will use a chi-squared test, and one needs to use Appendix 6.B.
However, that appendix is set up for entering the two proportions, not the odds
ratio, and all that is known is one of the proportions (P2 = 0.1).

To calculate the value for P1 that gives an odds ratio of 2, one can use the
formula on page 69:

P1 = OR × P2 ÷ ([1 − P2] + [OR × P2]).

In this example:

P1 = (2 × 0.1) ÷ ([1 − 0.1] + [2 × 0.1]) = 0.18

So P1 is 0.18 and P2 is 0.1. P1 − P2 is 0.08. The Table 6.B.2 in Appendix 6.B
reveals a sample size of 318 per group.

Extra credit: Try this using the formula on page 87; just slog on through, carrying
6 places after the decimal. Then get an instant answer from the calculator on our
website, www.epibiostat.ucsf.edu/dcr/

5. Standard deviation of IQ scores is about one-fourth of the ‘‘usual’’ range (which
is 170 − 130 = 40 points), or 10 points.

Total width of the confidence interval = 6 (3 above and 3 below) Confidence
level = 99%

Standardized width of the confidence interval = total width/standard devia-
tion W /S = 0.6

Using Table 6.D, go down the W /S column to 0.60, then across to the 99%
confidence level. About 74 medical students’ IQ scores would need to be averaged
to obtain a mean score with the specified confidence interval.

http://www.epibiostat.ucsf.edu/dcr/
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CHAPTER 7

1. a. Measure serum vitamin B12 levels in a cohort of white women more than 70
years of age and without a history of hip fractures and analyze the association
with incident hip fractures observed over the next 5 years. (Choice of study
subjects is based on the fact that hip fracture is most common in white women;
the age cutoff is somewhat arbitrary, but based on the age at which hip fracture
incidence rises rapidly and to substantial levels.) The use of reported dietary
intake of foods rich in vitamin B12 instead of the serum level might be more
expensive because dietary histories take a lot of time to collect and score and
would certainly be a less precise and less accurate measurement.

b. Advantages of the prospective cohort design for studying vitamin B12 sufficiency
and hip fractures:
• Temporal sequence (i.e., the hip fracture follows the vitamin B12 deficiency)

helps establish a cause–effect relationship. Women who fracture their hips
might become vitamin B12 deficient after the fracture because they have
reduced food intake or received treatments to suppress acid (and vitamin
B12) production.

• The prospective design allows you to design good methods for measuring the
predictor variable (i.e., serum vitamin B12).

• The cohort design avoids the sampling bias that is always a possibility in
case–control studies if the women with fractures come from a different
accessible population than those without fractures.

Disadvantage of the prospective cohort design:
• A prospective cohort study will require many subjects followed for multiple

years. The study will therefore be very expensive.
c. A retrospective cohort study could be done if you could find a cohort with stored

serum or records on dietary vitamin B12 intake and with reasonably complete
follow-up to determine who developed hip fracture. The main advantage of
this design is that it would be less time consuming and expensive. The major
drawback is that measurements of vitamin B12 in the serum might be altered by
the storage, and that measurements of potential confounders (such as age, race,
physical activity, cigarette smoking, etc.) may not be available.

CHAPTER 8

1. a. The cases might consist of all women between 30 and 75 years of age with
ovarian cancer reported to the Northern California Cancer Center Tumor
Registry. This tumor registry has been shown to include nearly 100% of incident
ovarian cancer cases in five San Francisco Bay Area counties.

b. The controls might be a random sample of all women between 30 and 75 years
of age from the same five counties in the San Francisco Bay Area. The random
sample might be obtained by using random-digit dialing.

c. The methods outlined for choosing cases and controls are aimed at obtaining
all cancer cases and a random sample of those at risk in the target population
(women 30 to 75 years old in five Bay Area counties). However, it is possible,
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since ovarian cancer requires intensive therapy and is deadly, that some cases may
be unwilling to enroll in the study or may die before they can be interviewed.
If a family history of ovarian cancer is related to more aggressive forms of
ovarian cancer, then the study might underestimate its relative risk, because
those cases with a positive family history are less likely to survive long enough
to be included in the sample of cases. If familial ovarian cancer is more benign
than other ovarian cancers, the opposite could occur. Similarly, it is possible that
healthy women who have a family member with ovarian cancer will be more
interested in the study and more likely to enroll as a control than women who
do not have a family member with ovarian cancer. In that case, the prevalence of
family history of ovarian cancer in the control group will be artificially high, and
the estimate of the risk for ovarian cancer due to family history will be falsely
low. This problem might be minimized by not telling the potential control
subjects exactly what the research question is or exactly which cancer is being
are studied, if this can be done in a way that is acceptable to the IRB.

d. Family history of ovarian cancer is generally measured by asking subjects about
how many female relatives they have, and how many of them have had ovarian
cancer. Recall bias is a possible problem with this approach. Women with ovarian
cancer, who may be concerned about the possibility of a genetic predisposition
to their disease, may be more likely to remember or find out about relatives with
ovarian cancer than healthy women who have not had reason to think about this
possibility. In this case, the estimate of the association between family history
and ovarian cancer may be falsely high.

In addition, women may confuse the gynecological cancers (cervical, uter-
ine, and ovarian) and confuse benign gynecological tumors that require surgery
with malignant tumors. This may cause misclassification (some women without
a family history of ovarian cancer will report having the risk factor and be
misclassified). If misclassification occurs equally in the cases and controls, the
estimate of the association between family history and ovarian cancer will be
falsely low. If this type of misclassification is more common in cases (who may
be more likely to misinterpret the type of cancer or the reason for surgery in
relatives), then the estimate of the association between family history and ovar-
ian cancer will be falsely high. Misclassification could be decreased by checking
pathological records of family members who are reported to have ovarian cancer
to verify the diagnosis.

e. The simplest approach would be to dichotomize family history of ovarian
cancer and use the odds ratio as the measure of association. The odds ratio
approximates the relative risk because the outcome (ovarian cancer) is rare. A
simple chi-square would then be the appropriate test of statistical significance.
Alternatively, if family history were quantified (e.g., proportion of first- and
second-degree female relatives affected), one could look for a dose–response,
computing odds ratios at each level of exposure.

f. The case–control design is a reasonable way to answer this research question
despite the problems of sampling bias, recall bias, and misclassification that are
noted above. A nested case–control study is generally preferable if possible. The
chief alternative would be a large cohort study, but because ovarian cancer is so
rare, a cohort design is probably not feasible.

2. a. The study is cross-sectional because the potential predictors (maternal height
and weight) are measured at essentially the same time as the outcome (infant
birth weight).
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b. Causal inference in cross-sectional observational studies depends on the time
sequence of the predictor and outcome variables, and on the possible role of
confounding variables. In this study, the mother’s weight was measured just
after delivery and reflects a combination of the mother’s weight before she
became pregnant and the amount of weight that she gained during pregnancy.
Since the amount of weight gained during pregnancy may depend on the
weight of the fetus, it is not clear which variable is the predictor. However, the
mother’s height measured just after delivery probably does not differ from her
height if it had been measured before conception. It is reasonable therefore
to conclude that maternal height is a predictor of birthweight. However, the
phrase ‘‘dependent on’’ conveys a hint of causal inference that goes beyond
the findings, since confounders like nutritional state of the mother may be
operating.

3. Go for it–the sky’s the limit.

CHAPTER 9

1. There are five possible explanations for the association between diet and CHD:
a. Chance—the finding that people with CHD eat fewer fruits and vegetables

was due to random error. As discussed in Chapter 5, the P value allows
quantification of the magnitude of the observed difference compared with what
might have been expected by chance alone. All else being equal, the smaller the
P value, the less plausible chance is as an explanation.

b. Bias—there was a systematic error (a difference between the research question
and the way the study plan was carried out) with regard to the sam-
ple, predictor variable, or outcome variable. For example, the sample may
be biased if the controls were patients at the same HMO, but were se-
lected from those attending an annual health maintenance examination, as
such patients may be more health conscious (and hence eat more fruits
and vegetables) than the entire population at risk for CHD. The measure-
ments of diet could be biased if people who have had a heart attack are
more likely to recall poor dietary practices than controls (recall bias) or
if unblinded interviewers asked the questions or recorded the answers dif-
ferently in cases and controls. The likelihood of bias can be reduced by
consulting with colleagues and carefully considering major design decisions
such as selection of study subjects, and by blinding measurements wherever
possible.

c. Effect–cause—it is possible that having a heart attack reduced people’s appetites,
so that they ate less food in general (including less fruits and vegetables). The
possibility of effect-cause can often be addressed by designing variables to ex-
amine the historical sequence—for example, by asking the cases if they changed
their diet after their heart attack. In this instance, a strategy would be to
express fruit and vegetable intake as percentage of total intake rather than as
the absolute intake.

d. Confounding—there may be other differences between those who eat more
fruits and vegetables and those who eat fewer, and these other differences may
be the actual cause of the lower rate of CHD. For example, people who eat
more fruits and vegetables may exercise more. The strategies for addressing the
latter possibility are as follows:
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Plan Advantages Disadvantages

Design Phase
Specification Enroll only

people who
report no
regular exercise

Simple Will limit the pool of
eligible subjects, making
recruitment more difficult.
The study may not
generalize to people that
exercise.

Matching Match each case
to a control with
similar exercise
level

Eliminates the
effect of exercise
as a predictor of
CHD, often
with a slight
increase in the
precision
(power) to
observe diet as a
predictor.

Requires extra effort to
identify controls to match
each case. Will waste cases if
there is no control with a
similar exercise level.
Eliminates the opportunity
to study the effect of
exercise on CHD. Requires
a matched statistical analysis
model.

Analysis Phase
Stratification For the analysis,

group the
subjects into
three or four
exercise strata

Easy,
comprehensible,
and reversible

Can only reasonably
evaluate a few strata and a
few confounding variables
before you find no cases (or
controls) in a cell. Will lose
some of the information
contained in fitness
measured as a continuous
variable by switching to a
categorical variable, and this
may result in incomplete
control of confounding.

Statistical
adjustment
(modeling)

Use logistic
regression
model to control
for fitness as well
as other
potential
confounders

Can reversibly
control for all
the information
in fitness as a
continuous
predictor
variable, while
simultaneously
controlling for
other potential
confounders
such as age, race,
and smoking

The statistical model might
not fit the data, resulting in
incomplete control of
confounding and
potentially misleading
results. For example, the
effect of diet or physical
fitness may not be the same
in smokers and nonsmokers.
The important potential
confounders must have
been measured in advance.
Sometimes it is difficult to
understand and describe the
results of the model,
especially when variables are
not dichotomous.
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In addition to these four strategies for controlling confounding in obser-
vational studies, there is the ultimate solution: designing a randomized blinded
trial.

e. Cause–effect—the fifth possible explanation is that eating fruits and vegetables
really does reduce the rate of CHD events. This explanation is made likely
partly by a process of exclusion, reaching the judgment that each of the other
four explanations is unlikely and partly by seeking other evidence to support the
causal hypothesis. An example of the latter is to consider the biologic evidence
that there are components of fruits and vegetables (e.g., antioxidants) that are
antiatherogenic.

CHAPTER 10

1. a. The advantage of using the biomarkers as the primary outcome of the trial is a
smaller sample size and a shorter duration to determine whether the treatment
reduces the level of the marker. The disadvantage is the uncertainty of whether
change in the level of the marker induced by the treatment means that the
treatment will reduce the progression of Alzheimer’s disease.

b. The clinical diagnosis of dementia is a more meaningful outcome of the trial
that could improve clinical practice for prevention of dementia. On the other
hand, such a trial would be large, long and expensive.

2. a. Participants should be asked at each follow-up visit whether they experience
diarrhea, nausea, or vomiting. This could be done using a check box format
that is easy to code and analyze. To find other unanticipated adverse effects,
participants should also be asked to describe other symptoms, conditions or
medical care (such as hospitalization or new prescription drugs) that have
occurred since the previous visit. These would be asked in an open-ended way,
but the responses can be coded for data entry.

b. Baseline collection of data should include (a) measurement of the outcome
(assessment of cognitive function), (b) risk factors for the outcome, such as
hypertension or family history of dementia that might identify patients with the
highest rate of the outcome and, perhaps, the greatest benefit from treatment;
(c) information about how to contact the participant, family or doctor to
allow more complete follow-up. Biological specimens should be stored to allow
future measurement of factors, such as genotypes of enzymes that metabolize
the drug, which could influence the effectiveness of the treatment.

c. Stratified blocked randomization could guarantee that there would be a very
similar number of participants with the Apoε4 genotype in the treatment and the
placebo group. This could be especially important if the effect of the treatment
is influenced by presence of the genotype. Stratified blocked randomization can
avoid small random numerical imbalances of an important factor that could have
relatively large impact on the outcome. On the other hand, this process makes
the trial more complicated (assessing Apoε4 genotype before enrollment will
delay randomization and raises issues that include how to counsel participants
about the results.) The risk of a substantial imbalance in a relatively large trial
(>200 per arm) is very low so that simple randomization would be good choice.



342 Answers to Exercises

CHAPTER 11

1. The main goal of a phase I trial is to determine if the treatment is sufficiently
safe and well tolerated to permit additional trials to find the best dose and test its
clinical effectiveness. A phase I trial would use one or more potential human doses
of the treatment with the main outcome of adverse events, such as the occurrence
of rash. There would be no control group.

2. a. The comparison of two treatments without a placebo group has several dis-
advantages. This design cannot accurately determine the effectiveness of the
new treatment: this requires comparison with a placebo. A large sample size
may be needed to test whether the two treatments are equivalent or that the
new treatment is not inferior. Equivalence or ‘‘noninferiority’’ trials have the
advantage of assuring that all patients receive an active treatment and not a
placebo, but this advantage is not important for a cosmetic problem.

b. A factorial design that includes a placebo has the advantages of comparing each
treatment to a placebo, and (if planned with adequate statistical power) testing
whether the combination of treatments is better than either one alone. The
obvious disadvantages are larger size, greater cost and complexity of the trial.

3. Adherence with the visits, protocol and study medication could be improved by:
– employing friendly research staff who are enthusiastic about the study
– reminders (by email, telephone or mail) of upcoming visits and the importance

of adherence to treatment
– reimbursement for travel, parking, and other expenses related to the study
– consider a run-in period to exclude those more likely to miss follow-up visits

or not adhere to treatment
– other potential strategies listed in Table 11.2

4. The main disadvantage of intention-to-treat is that it includes participants who do
not comply with the randomized treatment, and who therefore reduce the apparent
magnitude of any effect that is observed for the whole randomized group. However,
the disadvantages of using as-treated analyses in place of intention-to-treat are even
greater—because participants who do not comply with the intervention usually
differ from those who do comply in important ways, one no longer has a true
randomized comparison and may incorrectly conclude that the HairStat is effective.

5. The conclusion that HairStat works better in younger men, based on a subgroup
analysis, may be wrong and misleading because the result may be due to chance.
The probability of finding a ‘‘significant’’ effect in a subgroup when there is
no significant effect overall increases with the number of subgroups tested; it is
not clear how many subgroups were tested to find this ‘‘significant’’ effect. The
claim that the treatment is effective in men younger than age 40 implies that the
treatment was ineffective—or even had the opposite effect—in older men. This
result should also be reported and statistically tested for an interaction between
age and the effect of treatment. The claim would be stronger if there were a
biological basis for a greater effect in younger than older men and, for that reason,
the subgroup analysis had been planned in advance.

CHAPTER 12

1. a. The best way to sample subjects for a diagnostic test is generally to sample
patients at risk of a disease, before it is known who has the disease and who does
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not. In this case, sampling women who present acutely to a clinic or emergency
department with signs and symptoms consistent with pelvic inflammatory disease
(PID) would probably be best. Comparing the erythrocyte sedimentation rates
(ESRs) of women hospitalized with PID with those of a healthy control
population (nurses, medical students) would be the worst approach, because
both the spectrum of disease and especially the spectrum of nondisease are
not representative of the groups in whom the test would be used clinically.
(Those hospitalized for PID probably have more severe disease than average,
and healthy volunteers are much less likely to have high ESRs than women with
abdominal pain due to causes other than PID.)

b. If those assigning the final diagnosis used the ESR to help decide who had PID
and who did not, both the sensitivity and specificity might be falsely high. The
more those assigning the diagnosis relied on the ESR, the greater the bias in
the study.

c. The best answer is that you should not use any particular cutoff for defining an
abnormal result. Rather, you should graphically display the trade-off between
sensitivity and specificity using a receiver operating characteristics (ROC) curve
and present likelihood ratios for various ESR intervals (e.g., >20, 20 to 49,
≥50 mm/hr) rather than sensitivity and specificity at different cutoffs. This is
illustrated by the table below, which can be created from the information in the
question:

ESR PID No PID
Likelihood

Ratio

 50 75% 15% 5.00

20–49 15% 35% 0.43

< 20 10% 50% 0.20

100% 100%

>

The ROC curve could also be used to compare the ESR with one or more other
tests such as a white blood cell count. This is illustrated in the hypothetical
ROC curve below, which suggests that the ESR is superior to the WBC for
predicting PID:
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2. a. This problem illustrates the common error of excluding people from the
numerator, without excluding them from the denominator. Although it is
true that there were only two children with ‘‘unexpected’’ intracranial injuries,
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the denominator for the yield must be the number of children with normal
neurological examinations and mental status—probably a much smaller number
than 200.

b. Unless the finding of an intracranial injury leads to changes in management
and there is some way to estimate the effects of these management changes
on outcome, it will be very hard to know what yield is sufficient to make
the test worth doing. It would be better to use ‘‘intracranial injury requiring
intervention’’ as the outcome in this study, although this will require some
consensus on what injuries require intervention and some estimate of the
effectiveness of these interventions for improving outcome.

c. The first advantage is the ability to examine possible benefits of normal results.
For example, a normal CT scan might change the management plan from
‘‘admit for observation’’ to ‘‘send home.’’ In diagnostic yield studies, normal
results are generally assumed to be of little value. Second, as mentioned earlier,
abnormal CT scan results might not lead to any changes in management (e.g., if
no neurosurgery was required and the patient was going to be admitted anyway).
Studying effects of tests on medical decision making helps to determine how
much new information they provide, beyond what is already known at the time
the test is ordered.

3. a. If only children who had a CT scan are included, the study will be susceptible to
the first type of verification bias (Appendix 12B), in which sensitivity is falsely
increased and specificity is falsely decreased, because children without focal
neurologic abnormalities (who are either ‘‘false negatives’’ or ‘‘true negatives’’)
will be underrepresented in the study.

b. If children with head injuries who did not have a CT scan are included, and
assumed not to have an intracranial injury if they recover without neurosurgery,
then the study will be susceptible to the second type of verification bias, ‘‘double
gold standard bias’’ (Appendix 12C), which will tend to increase both sensitivity
and specificity, if some intracranial injuries resolve without neurosurgery.

CHAPTER 13

1. Three possibilities:
a. Analyze data from the National Health and Nutrition Examination Survey

(NHANES). These national studies are conducted periodically and their results
are available to any investigator at a nominal cost. They contain data from
population-based samples that include variables on self-reported clinical history
of gallbladder disease and the results of abdominal sonography.

b. Analyze Medicare data on frequency of gallbladder surgery in patients more
than 65 years of age in the United States or National Hospital Discharge Survey
data on the frequency of such surgery for all ages. Both data sets contain
a variable for race. Denominators could come from census data. Like the
NHANES, these are very good population-based samples but have the problem
of answering a somewhat different research question (i.e., what are the rates
of surgical treatment for gallbladder disease). This may be different from the
actual incidence of gallbladder disease due to factors such as access to care.

c. Check local coroner records on the relation between gallbladder disease (as
an incidental finding on autopsy) and race. Such a sample, however, may have
biases as to who gets autopsied.
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2. a. The main advantages are that using CHS data in a secondary data analysis was
quick, easy, and inexpensive—especially compared to the time and expense of
planning and conducting a large cohort study. In addition, the research fellow
has since developed an on-going collaboration with the investigators in CHS
and has been able to add more sophisticated measures of kidney function to
CHS in an ancillary study.

b. In some cases, the secondary dataset does not provide optimal measures of the
predictor, outcome or potential confounding variables. It is important to be
sure that the dataset will provide reasonable answers to the research question
before investing the time and effort required to obtain access to the data.

3. There have been several large randomized controlled trials of the effect of es-
trogen and SERMs on various disease outcomes, including cardiovascular events,
cancer and thromboembolic events. These trials include the Heart and Estro-
gen/Progestin Replacement Study, the Women’s Health Initiative randomized
trials, the Breast Cancer Prevention Trial, the Multiple Outcomes of Raloxifene
Evaluation trial, and the Raloxifene Use for The Heart trial. The best place for
this investigator to begin would be to determine if estrogen can be measured
from stored frozen sera, and if so, determine if any of these large trials have
stored sera that could be used for this measurement. The best design for this
question is a nested case–control or case–cohort study. The investigator will likely
need to write a proposal for this ancillary study, obtain approval from the trial
Steering Committee and sponsor, and obtain funding to make the measurements
(a relatively inexpensive prospect, since most of the costs of the study have already
been covered by the main trial).

CHAPTER 14

1. a. It depends on whether the participants in the original study gave consent for
their samples to be used in future studies and what kinds of studies were
specified. The samples may have been collected to be used only to repeat the
tests specified in the protocol, in case of lost samples or laboratory accidents.
Or, the participants might have specified that the samples could be used in
other studies of coronary artery disease. In these two situations, the original
consent would not cover the proposed project.

b. Under the Common Rule, a project can be carried out on existing specimens
and data if the new investigator cannot identify the participants, either directly or
with the assistance of someone else. Thus, if the new researcher receives samples
and data labeled 0001, 0002, 0003, etc., and the code that links the samples
and the identities of the participants is destroyed or not accessible to the new
researcher, additional consent need not be obtained for the secondary study. The
ethical justification is that such anonymization of materials protects participants
from breaches of confidentiality, which is the major risk in research with existing
materials and data. The presumption is that no one would object to their
materials and data being used if there was no risk of breaches of confidentiality.
Note, however, that some participants might find it objectionable for someone
to sequence their DNA, even if confidentiality is maintained, since the DNA
contains information that could lead ultimately to a loss of confidentiality. In
other words, for some types of sensitive research, there may be ethical concerns
about studies that are permitted under the federal regulations.
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One way to resolve this dilemma is to have the IRB for the proposed study
have strong input from lay and community members. In addition, the IRB
might add ad hoc reviewers who represent groups who might have specific
concerns about the proposed study, such as ethnic minority communities
who have suffered discrimination from genetic research in the past. Another
approach if the prospective study is still ongoing is that the investigators can
to ask participants to give specific consent for the new study. If feasible, this
approach best respects the wishes of participants.

c. When researchers collect new samples in a research project, it is prudent to ask
permission to collect and store additional blood, to be used in future research
studies. Storing samples allows future research to be carried out more efficiently
than assembling a new cohort. Tiered consent is recommended: the participant
is asked to consent (i) to the specific study (for example the original cohort
study), (ii) to other research projects on the same general topic (such as risk
of coronary artery disease), or (iii) to all other future research that is approved
by an IRB and by a scientific review panel. To address the issues raised in (b),
the participant might also be asked to consent specifically to research in which
their DNA would be sequenced. The participant may agree to one, a few, or all
options. Of course, it is impossible to describe future research. Hence consent
for future studies is not really informed in the sense that the participant will not
know the nature, risks, and benefits of future studies. The participant is being
asked to trust that IRBs and scientific review panels will only permit future
studies that are scientifically and ethically sound.

2. a. Withholding from the control group drugs that are known to be effective would
subject them to harm and would therefore be unethical. Even if participants
would give informed consent for participate in such a placebo-controlled
trial, an IRB may not approve such a study, which violates the regulatory
requirements that the risk/benefit balance be acceptable and that the risks be
minimized.

b. The investigators should try to identify a subgroup of patients for whom no
therapy has been shown to prolong survival (the most clinically significant
end-point in most cancer treatments). For example, patients whose disease
has progressed despite chemotherapy and have no options that are proven
effective could be asked to participate in a placebo-controlled trial of the
experimental intervention. An acceptable control arm could be placebo or best
current treatment. This approach assumes that if the drug is active in previously
untreated patients it will also be active after other treatments have failed. It is,
of course, possible, that a drug that does not work in refractory disease may be
effective as first-line treatment.

3. a. During informed consent, the investigators must discuss: (i) the nature of the
study; (ii) the study intervention and the number and length of visits; (iii) the
potential benefits and risks of participation (in this case primarily stigma and
discrimination if confidentiality is breached); (iv) alternatives to participation in
the trial, including HIV prevention measures that are available outside the trial;
(v) the voluntary nature of participation and the right to withdraw at any time;
(vi) protection of confidentiality consistent with state public health reporting
requirements; and (vii) a commitment to answer questions about the study.
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b. Investigators need to present information in a manner that participants can
understand. Participants with low health literacy will not be able to comprehend
a detailed written consent form. It would be useful for the researchers to consult
with community and advocacy groups on how to present the information.
Suggestions might include community meetings, videotapes, DVDs, and comic
books. Extensive pretesting should be carried out. Furthermore, researchers
should determine what misunderstandings about the study are common and
revise the consent process to address them.

c. Even though the study is an observational study, researchers have an ethical
obligation to provide information to participants about how to reduce their risk
for HIV. There are both ethical and scientific reasons for doing so. Researchers
have an ethical obligation to prevent harm to participants in their study. They
may not withhold feasible public health measures that are known to prevent
the fatal illness that is the end-point of the study. Such measures would include
counseling, condoms, and referral to substance abuse treatment and needle
exchange programs. The preparedness study offers an opportunity to develop
and field-test these prevention interventions. Researchers must also invoke these
co-interventions to prevent harm to participants in the subsequent vaccine trial,
even though the power of the trial will be reduced.

CHAPTER 15

1. a. There is no definition of how big a ‘‘drink’’ is.
b. There is no way to respond if the subject is drinking more than eight drinks per

day.
c. The question does not specify time—weekdays versus weekend, everyday versus

less than daily.
d. It may be better to specify a particular time frame (e.g., in the past 7 days).

2. a. Which of the following statements best describes how often you drank alcoholic
beverage during the past year? An alcoholic beverage includes wine, liquor or
mixed drinks. Select one of the 8 categories.

About once a month
2–3 Times per month

Less than 12 times a year
Rarely or not at all

Every day
5– 6 Days per week
3–4 Days per week
1–2 Days per week

b. During the past year, how many drinks did you usually have on a typical day
when you drank alcohol? A drink is about 12 oz. of beer, 5 oz. of wine, or
11

2 oz. of hard liquor. drinks
c. During the past year, what is the largest number of alcoholic drinks you can

recall drinking during one day? drinks
d. About how old were you when you first started drinking alcoholic beverages?

years old. (if you have never consumed alcoholic
beverages, write in ‘‘never’’ and go to question #7)
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e. Was there ever a period when you drank quite a bit more than you do now?

No
Yes If Yes, which of the following statements best describes how often

you drank during that period? Select one of the 8
categories

e(i).

e(ii).  During that period, how many drinks did you usually have on
a typical day when you drank alcohol? drinks

e(iii). For about how many years did you drink more than you do
now? years

About once a month
2–3 Times per month

Less than 12 times a year
Rarely or not at all

Every day
5–6 Days per week
3–4 Days per week
1–2 Days per week

f. Have you ever had what might be considered a drinking problem?

No
Yes

3. a. Obtaining data through interviews requires more staff training and time than a
self-administered questionnaire and is therefore much more expensive.

b. Some subjects do not like to tell another person the answer to sensitive questions
in the area of sexual behavior.

c. Unless the interviewers are well trained and the interviews are standardized, the
information obtained may vary.

d. However, interviewers can repeat and probe in a way that improves compre-
hension and produces more accurate and complete responses in some situations
than a self-administered questionnaire.

CHAPTER 16

1.

SubjectID EverSmoked100Cigs AgeFirstCig AvgCigsPerDay PastWeekCigsAny PastWeekCigsPerDay AgeStoppedSmoking

1001 TRUE 17 30 TRUE 30
1002 TRUE 21 20 FALSE 45
1003 FALSE FALSE

This is how the data might look in a spreadsheet program such as Excel. There are
many acceptable possibilities for the field names (column headings). These field
names use IntraCaps (capitals in the middle of the word to separate its parts).
Database designers are about equally divided between those who like IntraCaps
and those who hate them.

2. a.

SubjectID KitNumber AdminDate AdminTime SzStopPreHosp SzStopPreHospTime HospArrTime HospArrSzAct HospArrGCSV

189 A322 3/12/1994 17:39 FALSE 17:48 TRUE
410 B536 12/1/1998 01:35 TRUE 01:39 01:53 FALSE 4
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b.
Field Name Data Type Description Validation Rule

SubjectID Integer Unique subject
identifier

KitNumber Text(5) 5-character
Investigational
Pharmacy Code

AdminDate Date Date study drug
administered

AdminTime Time Time study drug
administered

SzStopPreHosp Yes/no Did seizure stop
during
prehospital
course?

SzStopPreHospTime Time Time seizures
stopped during
prehospital
course (blank if
seizure did not
stop)

HospArrTime Time Hospital arrival
time

HospArrSzAct Yes/no Was there
continued
seizure activity
on hospital
arrival?

Check against
SzStopPreHosp

HospArrGCSV Integer Verbal GCS on
hospital arrival
(blank if seizure
continued)

Between 1 and 5

c. Advantages of an on-screen form:
• No need for transcription from paper forms into the computer data tables
• Immediate feedback on invalid entries
• Programmed skip logic (if seizure stopped during prehospital course, com-

puter form prompts for time seizure stopped, otherwise this field is disabled
and skipped)

• Can be made available via a web-browser at multiple sites simultaneously
Disadvantages of an on-screen form:
• Hardware requirement—a computer workstation
• Some user training required
Advantages of a paper form:
• Ease and speed of use
• Portability
• Ability to enter unanticipated information or unstructured data (notes in the

margin, responses that were not otherwise considered, etc.)
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• Hardware requirement—a pen
• User training received by all data entry personnel in elementary school
Disadvantages of a paper form:
• Requires subsequent transcription into the computer database
• No interactive feedback or automated skip logic
• Data viewing and entry limited to one person in one place
Although data entry via on-screen data collection forms has many advantages
and we recommend it for most research studies, in this study it is impractical.
The simplest, fastest, and most user-friendly way to capture data on a nonvolatile
medium is still to use a pen and paper.

d. When coded with 0 for no or absent and 1 for yes or present, the average value
of a dichotomous (yes/no) variable is interpretable as the proportion with the
attribute. Of those randomized to lorazepam, 40.9% (27 of 66) were still seizing
on hospital arrival; of those randomized to diazepam, 57.4% (39 of 68) were still
seizing; and of those randomized to placebo, 78.9% (56 of 71) were still seizing.

CHAPTER 17

1. a. Not enough! But here are some steps he can take:
• Identify all missing and outlying values and recheck the paper forms to make

sure that the data were entered correctly.
• Retrieve missing data from charts.
• Collect missing interview data from surviving patients (but this will not help

for those who died or for those whose responses might have changed over
time).

• Make a special effort to find subjects who had been lost to follow-up, and at
least get a telephone interview with them.

• Obtain vital status, using the National Death Index or a firm that finds
people.

b. • Collect less data.
• Check forms on site immediately after collecting the data to be certain that

all items are complete and accurate.
— Use interactive data entry with built-in checks for missing and out-of-

range values.
— Review this shortly after data collection so that missing data can be

collected before the patient leaves the hospital (or dies).
• Periodically tabulate the distributions of values for all items during the course

of the study to identify missing values and potential errors.
• Hold periodic team meetings to review progress.

CHAPTER 18

1. a. The G.I. clinic
• Advantages: This is likely to be a convenient and accessible source of patients.

The clinic staff probably has experience participating in research. Implement-
ing a standard battery of diagnostic tests for patients with abdominal pain
should not be difficult.
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• Disadvantages: Patients in this clinic might be a highly selected subset of
all patients presenting with abdominal pain. Your results may therefore have
limited generalizability.

b. Community clinics
• Advantages: Here you can identify patients at first presentation without the

selection and delay caused by the referral process. Community physicians may
benefit from the opportunity to participate in research.

• Disadvantages: These are mainly logistic. Identifying participating physicians
and patients and implementing a standard research protocol will be a major
organizational task, and quality control will be a challenge.

2. a. This can only be answered with local data. Research elsewhere will not help
you.

b. This is well known from the international literature. Repeating such research in
China is unlikely to be an efficient use of resources.

c. For this question, the generalizability of research from elsewhere is likely to
be intermediate. Strategies for smoking cessation proven successful in other
countries may serve as a basis for strategies to be tried in China, but you
cannot be sure they will have the same success in China without local research.
Previous studies in populations elsewhere with cultural ties to China, such as
recent Chinese immigrants to the United States, may be helpful.

CHAPTER 19

3. The investigator may lose money if the study-wide enrollment of participants
is finished before he can enroll enough participants to cover his costs. More
importantly, he might have a very limited role in the analysis and reporting of the
results by the company, which might be influenced by their incentive to market a
successful product. The investigator should insure that he has the right to obtain
and analyze the data from the trial. The potential for bias would be reduced if a
steering committee of academic scientists oversees the analysis and publications,
and the investigator should aspire to be a part of such a group.
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